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Abstract        
Chronic exposure to ambient Ozone (O3) air pollution induces respiratory inflammation and hyperreactivity, emphysema and interstitial 

lung fibrosis. O3-induced oxidative stress causes epithelial barrier injury and cell death activating Toll-like receptors, DNA sensing pathways 
and inflammasomes with production of a range of inflammatory chemokines with a mixed phenotype of COPD and asthma. O3 exposure 
is often associated with other pollutants causing exacerbation leading to severe respiratory disease. Here, we review mechanisms and 
therapeutic targets to control O3-induced COPD-like disease.
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PATHWAYS
	 Ozone (O3) is a highly reactive air pollutant, inducing oxidative 

damage that swiftly results in cell injury and death. The resultant 
oxidative stress on the host likely constitutes a primary mechanism 
causing an inflammatory response. Prolonged exposure to O3-polluted 
air is associated with increased morbidity and mortality, along with 
heightened responses to microbial or allergen challenges [1-3]. 
Hyaluronic acid (HA), a degradation product of matrix components, and 
HSP70, generated by O3-induced tissue damage, may potentially activate 
TLR4 [4-6]. Furthermore, the TLR adaptor proteins MyD88 and TIRAP 
are indispensable for the inflammatory response [5], as they activate NF-
κB and regulate cytokine gene expression.

IL-1β is a potent inflammatory mediator induced by bacterial infection 
and tissue injury [7] involving the activation of the inflammasome 
complex in the response to O3 [8]. 

THERAPEUTIC TARGETS FOR PHARMACOLOGICAL 
INTERVENTIONS:

	 The existing experimental data offer promising drug 
targets for mitigating O3-induced chronic inflammatory lung disease. 
Nonetheless, the efficacy of therapeutic interventions tested in mouse 
models necessitates validation through clinical studies. Below, we outline 
the potential efficacy of agonists or antagonists that merit consideration 
for inclusion in clinical trials (Figure 1):

•	 T N F 
neutralization presents a potential option, but reduces host innate 
immunity.

•	 IL-1β neutralizing antibodies or IL-1 receptor antagonist 
(Anakinra).

•	 Neutralizing antibodies targeting IL-23 and IL-17A are currently 
available. 

•	 Dampening of NRP3 inflammasome activation using inhibitors such 
as MCC950 [9-11]

•	 Blockade of nucleic acid sensor activation, notably cGAS/STING, 
using antagonists [11]. 

•	 Aryl hydrocarbon receptor activation by microbial tryptophan 
metabolites and more [12] 

•	 Blockade of cholinergic pathway activated suggest a beneficial 
effect of the cholinergic pathways [13].

•	 Muscarinergic inhibitors such as Tiotropium and are efficacious in 
COPD patients [14-18]. 

•	 ROS inhibitors such as N-acetyl cysteine attenuate O3 inflammation 
reviewed [19]. 

•	 Microbial metabolites, such as butyrate activating /HCAR2, 
attenuate inflammatory diseases [20, 21].

•	 Histone modulators of histone deacetylases (HDAC) is another 
approach using HDAC inhibitors [22].

•	 DNase treatment degrades inflammatory cell-free DNA upon cell 
death degrading DNA [23, 24]. 

•	 Inhibitors suppressing myofibroblast transdifferentiation, such 
as by N23Ps (N-(2-methoxyphenyl)-3-(phenyl)acrylamides) and 
derivatives are novel compounds suppressing myofibroblast 
transdifferentiation, collagen deposition, and fibrosis. N23Ps target 
SMURF2, a SMAD-specific E3 ubiquitin protein ligase2 [25].

NOVEL COMPOUNDS SUPPRESSING MYOFIBROBLAST 
TRANSDIFFERENTIATION

	 Lung fibrosis involves the excessive deposition of ECM 
components, mainly collagen, leading to scarring and impaired lung 
function. The differentiation of fibroblasts into myofibroblasts is a 

crucial event in this 
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Figure 1: Lung-resident cell signatures from healthy humans and mice revealed that they are able to prompt response to tissue injury by DAMP 
and Alarmin expression. Visualization of dimension-reduced single-cell transcriptomic data (scRNAseq) by Uniform Manifold Approximation 
and Projection (UMAP) reveals different annotated cell types in the human lung (A) and in the mouse lung (C). UMAP embedded visualization 
of “DAMP and Alarmin signaling” and “Inflammasome and Interleukin-1 signaling” related gene expression in human lung cells (B) and 
in mouse lung cells (D). Cell gene signatures from UMAP embedded visualization of related gene expression in healthy mouse lung cells 
(E). Human lung single-cell data was taken from the integrated Human Lung Cell Atlas (HLCA) core, including data from healthy lung tissue 
from 107 individuals. The data was downloaded via cellxgene (https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-
db10d30de293). Mouse lung single-cell data is downloaded under GEO accession: GSE185006, containing mice exposed to filtered air (FA) 
or cigarette smoking for 2 and 4 months to establish a COPD model. Only 6 lungs from mice exposed to FA were included in the study to 
represent healthy lungs [26, 27]. Lianyong, please explain shortly how you analyzed these data, once that, the method will be mentioned here.
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Figure 2: Ozone (O3)-exposure induced acute and chronic alterations in mice lungs: Role of oxeiptosis, alarmins, DAMPs, and inflammasome 
pathways. Ozone-induced oxeiptosis is a caspase-independent, ROS-sensitive cell death pathway distinct from traditional apoptosis (A). This 
pathway involves the key molecules NRF2, KEAP1, PGAM5, and AIMF1. Oxeiptosis occurs by the disruption of the protective antioxidant complex 
KEAP1/PGAM5/NRF2, releasing NRF2 and the phosphatase PGAM5, which activates AIFM1. PGAM5, in response to oxidative stress induced by O3, 
dephosphorylates AIFM1, a pro-apoptotic factor that is a terminal effector protein. Dephosphorylated AIFM1 is translocated from mitochondria to 
the nucleus, which induces chromatin condensation, DNA fragmentation, and cell death. Experimental design of O3-induced lung injury and RNAseq 
of lung tissue (B), characterized as acute (single O3-exposure, GSE161538) and chronic (multiple O3-exposure, GSE156799) models. RNAseq 
analysis showing RNA differential expression comparing O3-exposure normalized by exposure to filtered air, from GSE161538 (Single ozone 2ppm 
3h, n= 7 filtered air-exposed and 4 O3-exposed mice) and GSE156799 (Ozone 0.8 ppm 4h/day, during 3 weeks, n= 8 filtered air and 8 O3-exposed 
mice) (C-F). Heatmap of RNAseq expression (C), RNAseq differential expression of acute model Day 1 (D) and Day 4 (E) after a single O3-exposure 
(GSE161538), and chronic model after 3 weeks (F) of multiple O3-exposure (GSE156799). RNAseq datasets found in the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) were analyzed by Phantasus (https://genome.ifmo.ru/phantasus) and presented as Log2 
Fold Change (Log2FC) [28]. Differences were considered significant at the Adjusted P-value <0,05. Red represents significative up-regulated and 
blue significative down-regulated genes (D-F). Venn diagram illustrating common up-regulated genes induced by O3-exposure of acute (Day 1 
and Day 4) and chronic (3 weeks) models (G). The proposed mechanism of acute and chronic lung injury induced by O3 exposure shows that 
Il-33, Areg, and Myd88 may represent possible targets to control lung inflammation (H). Illustration A and H were constructed using Biorender.
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process. This differentiation is driven by profibrotic signals such as 
TGF-β and results in increased collagen synthesis and tissue stiffening, 
contributing to the pathological remodeling observed in fibrotic lung 
diseases. Understanding this process is crucial for developing therapeutic 
strategies to inhibit or reverse fibrosis. N23Ps (N-(2-methoxyphenyl)-
3-(phenyl)acrylamides) are a novel class of highly potent class of 
compounds suppressing myofibroblast transdifferentiation, collagen 
deposition, cellular contractility, and altered cell shapes with a unique 
mode of action. Mechanistically, transcriptomics identified the SMURF2, 
a SMAD-specific E3 ubiquitin protein ligase2, as a potential therapeutic 
target network. Antifibrotic activity of N23Ps was verified by proteomics 
in a human ex vivo tissue fibrosis disease model, suppressing profibrotic 
markers SERPINE1 and CXCL8. N23Ps are highly potent developmental 
compounds inhibiting organ fibrosis in patients [25].

While the list of proposed therapeutic targets is not exhaustive, 
ongoing research to refine inhibitors and gain new mechanistic insights 
holds promise for developing more efficacious antagonists. Advancements 
in understanding the complex pathways underlying chronic inflammatory 
lung diseases may uncover additional targets for intervention. However, 
it is essential to recognize that while pharmacological approaches 
offer potential benefits, addressing the root cause of these diseases is 
paramount. In this regard, reducing airborne pollution with exceptionally 
high levels of O3 and smog stands out as the most efficacious measure 
to prevent the onset and progression of chronic respiratory ailments. 
Implementing comprehensive strategies to curb pollution, including 
regulatory measures, technological innovations, and public awareness 
campaigns, could significantly alleviate the burden of these debilitating 
conditions on global health [25-28] (Figure 2).

CONCLUSION

O3 exposure initiates cellular damage, initially causing oxeiptosis 
of the resident cell lining barrier, including leukocytes and non-
leukocytes. Acute O3 exposure leads to ROS activating the NLRP3 
inflammasome and release of mature IL-1α/β, a potent inflammatory 
mediator, activating neutrophils and macrophages causing additional 
tissue damage. Furthermore, ROS activate TLR, inflammasomes and 
DNA sensors triggering inflammatory mediators (IL-1β, TNF, IL-6, IL-
10, IL-17), and others. In silico analysis revealed that O3 exposure is 
correlated with the upregulation of Il-33, Areg and Myd88 in the lungs, 
as well as the antioxidant Nfe2l2 (NFR2) and apoptotic protein Aimf1 
genes, suggesting that they are essential in O3-induced acute and chronic 
airway inflammation in mice, may be sustained by oxeiptosis and type 
2 immune response. Prolonged exposure to O3 and other particulate 
pollutants exacerbates inflammation and may contribute to developing 
conditions such as emphysema, chronic inflammation, and fibrosis. 
Further exploring these inflammatory pathways is warranted to better 
understand their role in O3-induced lung injury and develop targeted 
therapeutic interventions.
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