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Overview of Lipids
Lipids are a diverse class of nonpolar or semipolar organic molecules that, in contrast to nucleic 

acids and carbohydrates, are insoluble in water but soluble in nonpolar organic solvents [1]. Within 
the cell, lipids have many roles, including signaling, structural composition of membranes, and 
energy storage [2]. Lipids can be synthesized de novo, or can be taken up from the environment, and 
used either directly or after modification [3].  

The membranes that form the outer boundary of the cell and the limits of organelles are made 
of three main categories of lipids: phospholipids, sphingolipids, and sterols (cholesterol, or the 
yeast alternative, ergosterol) [4]. Within each of these broad groupings; however, there are many 
molecular alterations that result in a wide range of different lipids that behave in diverse ways 
and at various intracellular locations. Furthermore, cells alter the lipid composition within their 
membranes, based on the environment, in order to achieve optimal membrane performance [5]. 

Molecules in the first category of membrane lipids, phospholipids, consist of two fatty acid tails 
and a polar head group attached to a 3-carbon glycerol backbone. An extremely large number of 
different molecules with different physical properties can be formed within the phospholipid family 
by varying the length and degree of saturation of the fatty acid tails, or the molecular structure of 
the head group [6]. Important lipids in this family include phosphatidylinositol (PI), an important 
precursor to several other phospholipids found within membranes throughout the cell [7,8]. These 
downstream lipids include Phosphatidylinositol-4- Phosphate [PI(4)P], which is important in yeast 
for secretion and in mammalian cells for recruitment of the adaptor protein AP-1 to the Golgi 
[9]. In addition, Phosphatidylinositol (4,5)-Bisphosphate [PI(4,5)P2] is a phospholipid that has 
important roles at the plasma membrane bymodulating actin polymerization and vesicle formation 
[10], and additionally playing a role in signaling and cold tolerance [11]. PI(4,5)P2 is synthesized 
through the action of the lipid kinase Mss4 [12], and can be dephosphorylated back to PI(4)P or PI, 
through the action of the phosphatases Sjl1, Sjl2, and Sjl3 (also known as Inp51, Inp52, and Inp53), 
thus modulating the composition of each species of phospholipid in the membrane [13]. PI(4,5)P2 
levels can be synthetically depleted using a temperature sensitive mutant, mss4ts, grown at elevated 
temperatures [12]. Additionally, accumulation of PI(4,5)P2 can be induced through deletion of 
SJL1, SJL2, or SJL3 [13]. 

The second category of membrane lipids, sphingolipids, is composed of the long chain base 
(a long carbon chain that terminates in an amine group and several hydroxyl groups) parent 
molecule sphingosine, as well as its derivatives: ceramides, sphingomyelins, cerebrosides, and 
gangliosides [14]. Sphingolipids are important parts of cell membranes, but also have signaling 
roles via regulating various aspects of the yeast cell cycle from cell division through apoptosis 
[15]. Additionally, sphingolipids have been shown to play a role in mitochondrial function and 
gene expression [16,17]. The first step in sphingolipid production is mediated by Lcb1 and Lcb2, 
which together form the serine palmitoyl transferase complex [18,19]. This step can be inhibited 
through addition of the atypical amino acid myriocin, resulting in a dose-dependent depletion of 
sphingolipids within the treated cells [20].

Molecules in the third category of membrane lipids, sterols, have a characteristic pattern 
of four interlocking hydrocarbon rings, rather than the long hydrocarbon chains present in 
phospholipids and sphingolipids. Sterols interact with sphingolipids in the cell membrane, playing 
an important role in endocytosis, transport of amino acids throughout the cell, energy production, 
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and maintenance of membrane stability during cellular stress [21-23]. 
Among the multiple sterols known to play important roles within the 
cell, cholesterol and ergosterol are the most prominent in mammalian 
and yeast cells, respectively [24].

Most steroids are synthesized in the ER and then trafficked to 
their final destination. For example, cholesterol can be incorporated 
into lipid droplets present in the cytoplasm, and then trafficked to 
the mitochondria by SNARE proteins [25]. Ergosterol is similar to 
cholesterol but has a slightly altered structure and function, and is 
synthesized from its precursor, zymosterol, via a complex multi-step 
process involving the ERG genes [26]. Knockout or overexpression of 
these genes can result in an accumulation of the ergosterol precursors 
or ergosterol within the cell membrane, altering cellular behavior and 
function [27]. The final steps of ergosterol synthesis are catalyzed 
by ERG6, ERG2, ERG3, ERG5 and ERG4, and knockout of these 
genes results in cells that are viable, but have abnormal phenotypes 
of varying degrees of severity due to the accumulation of ergosterol 
precursors [28]. Of these five genes, ERG6, ERG3, and ERG4 have the 
greatest impact on cell physiology. In strains with any of these genes 
deleted, plasma membrane stability is compromised, resulting in 
increased sensitivity to changes in environmental water (erg6Δ cells), 
decreased ability of the cell to maintain membrane potential (erg6Δ 
and erg4Δcells), variations in size and morphology (erg4Δcells), 
and altered susceptibility to antifungal agents (erg6Δ, erg3Δ and 
erg4Δcells) [21,29]. 

Roles of Lipid Classes
Each class of lipids has unique and important roles in maintaining 

proper cellular and organismal function. For example, phospholipids 
play important roles nutritionally in brain development [30,31] as 
well as possibly playing roles in proper brain function and in the 
prevention of neurodegenerative diseases [32,33]. Phospholipid 
consumption has also been linked to resistance against certain 
kinds of bacteria and viruses [34,35]. Interestingly, certain kinds 
of phospholipids have also been found to have anti-proliferative 
properties, leading to speculation about the possible applications for 
lipids in cancer therapies [36,37].

Sphingolipids have been found to have various roles in signaling 
and regulation of cellular processes. Specifically, sphingolipids play a 
role in regulating the cell cycle, apoptosis, cell survival [38,39], and 
inflammation [40,41]. Some examples of sphingolipids as signaling 
molecules include their role in regulating survival and apoptosis of 
murine neuroblasts [42], and their postulated role in development 
of diabetes through contributing to apoptosis of pancreatic β-cells 
[39]. Sphingolipids also have a role in recycling of endocytic 
membranes [43], and in intracellular trafficking during the life cycle 
of some viruses, including hepatitis B and C viruses [44]. Overall, 
sphingolipids play important roles as biological signaling molecules, 
and their imbalance would be likely to cause defects in cell function. 

Cholesterol (ergosterol) has important roles in many membranes, 
as well as being important as a precursor of steroid hormones [45]. 
The concentration of cholesterol in various organelles has been 
shown to be important in the trafficking of African swine flu virus 
[46], and trafficking of hedgehog ligands, which are important in the 
regulation of developmental processes [47], and integrins, which are 
important for interaction of cells with the extra-cellular matrix [48]. 

Improper accumulation of cholesterol in the mitochondria has been 
one factor implicated in the ability of cells to avoid apoptosis, leading 
to cancer [45,49]. 

Lipid-Associated Diseases
Alteration of membrane lipid concentrations is known to play a 

role in a variety of diseases. For example, cystic fibrosis causes lipid 
imbalances which impair surfactant ability in the lungs and promotes 
bacterial growth, leading to decreased breathing ability [50,51]. 
In mouse models of cystic fibrosis, membrane lipid imbalance was 
found in affected organs, but administration of docosahexaenoic acid 
[39], remedied both the lipid imbalances and disease pathology [52] 
and administration of myriocin, a sphingolipid synthesis inhibitor, 
reduced inflammation and bacterial growth [53]. Additionally, 
alterations in lipid concentration and cholesterol structure have been 
found to activate signaling pathways and allow for recruitment of 
proteins that play a role in amyloid formation, which can contribute 
to damage of pancreatic β-cells, leading to type 2 diabetes [54] or 
to the death of neurons, leading to Alzheimer’s disease [55-57]. 
Furthermore, alterations of membrane lipids have been implicated in 
multiple sclerosis and in the progressive neurodegenerative condition 
Niemann-Pick C Disease, suggesting that lipid imbalance is toxic for 
neural cells [58,59], but administration of a sphingosine homologue 
which allows for SNARE association with the cellular membrane has 
proven promising for treatment of multiple sclerosis [60].

Altered membrane lipid concentration has been reported in 
other diseases, although the imbalance may be a result, rather than a 
cause, of the disease. One of these findings is that levels of cholesterol 
and unsaturated fatty acids increased in the membranes of platelets 
isolated from women with preeclampsia [61]. Patients with sickle 
cell anemia were found to have a lack of Eicosapentaenoic Acid 
(EPA) and Docosahexaenoic Acid [39] making up the membranes of 
their erythrocytes, and supplementation of EPA and DHA has been 
proposed as a therapy to reduce the severity of the anemia in these 
patients [62,63]. Additionally, membrane lipid imbalance, specifically 
in immune cells such as macrophages, has been proposed to be 
involved in the development of atherosclerosis [64].

At the cellular level, membrane lipids play an important role, 
especially at the plasma membrane. Lipids are important for 
determining the curvature of the membrane, which may influence 
interactions with nearby cells [65], as well as impacting the secondary 
structure of proteins that interact with the membrane from outside the 
cell. Membrane lipid imbalance can also disrupt proper functioning 
of membrane proteins, including G Protein-Coupled Receptors 
(GPCRs), because proteins that are embedded in the membrane 
interact with membrane lipid components.

Membrane Trafficking Pathways Impacted by Lipid 
Composition

Membrane lipid concentration is crucial for proper functioning 
of membrane trafficking pathways, specifically endocytosis and the 
secretory pathway. In urothelial cells, excesses of oleic and linoleic 
acids have been found to reduce endocytosis [66], and altered sterol 
structure and composition can inhibit endocytosis [67], indicating 
lipid homeostasis is important for proper uptake of materials from 
the environment. Conversely, defects in the low density lipoprotein 
receptor can result in impaired uptake of cholesterol from the 



Citation: Woodman S and Kim K. Membrane Lipids: Implication for Diseases 
and Membrane Trafficking. SM J Biol. 2017; 3(1): 1016.

Page 3/5

Gr   upSM Copyright  Kim K

blood, leading to hypercholesterolemia and atherosclerosis [68]. 
Additionally, a high fat diet can also interfere with formation of lipid 
rafts required for uptake of components such as insulin from the blood 
[69]. Mechanistically, this occurs because proteins required to initiate 
the endocytic process are recruited to the membrane by the presence 
of specific lipids. For example, local PIP2 enrichment in the plasma 
membrane results in recruitment of SNX9 [70], which then activates 
other proteins, such as dynamin, that are important for completion 
of the endocytic process [71]. Other lipids, such as sterols, also play 
important roles in lipid raft formation, and can impact the rates of 
both clathrin-dependent and clathrin-independent endocytosis [67]. 

Lipid balance also plays a role in proper secretory transport 
from the Golgi to the plasma membrane. The levels of lipids in the 
membranes of each organelle vary, allowing the vesicular trafficking 
to proceed properly, and alterations of these compositions result 
in defects in various pathways [72]. In particular, target membrane 
SNAP receptors (t-SNAREs) rely on a proper balance of cholesterol 
in the endosomes and Golgi in order to be trafficked properly [73,74]. 
Specifically, defects in the endosome/Golgi lipid balance results in 
accumulation of Syntaxin 6, a protein important in trafficking from 
the TGN [75]. When cholesterol accumulates in the endosomes 
rather than being transported to the Golgi, localization of t-SNAREs 
important in the exocytic process is impaired, but this localization 
and transport pathway is rescued when proper cholesterol balance 
is restored [76]. Sphingolipid depletion also results in improper 
targeting of the v-SNARE Snc1 [77]. Additionally, SNAREs are 
unable to function properly when membrane fluidity is disrupted 
due to altered membrane lipid compositions, resulting in failure 
of vesicles to fuse with their target membranes, inhibiting many 
vesicular trafficking pathways, including recycling, secretory, and 
degradation pathways [78]. Alterations in lipid transport from the 
endosomes to the Golgi have also been implicated in the progressive 
neurological Niemann-Pick C disease, potentially due to impairing 
the transport of a variety of proteins within the cell [59]. 

Lipids are also important in regulating exocytosis. For example, 
exocytosis during sperm development is triggered by a change in 
cholesterol concentration, which serves as a signal that result in 
alterations in calcium concentrations and activation of phospholipase 
B, an enzymeimportant in the hydrolysis of the fatty acid tails of 
phospholipids [79]. Since the curvature of membranes depends on 
the relative area occupied by the lipid heads and tails, hydrolysis of 
lipid tails reduces the space occupied by the lipid tails, resulting in 
curvature of the membrane, which allows for exocytosis to occur [79]. 
Additionally, specific lipids are required for the formation of lipid rafts 
containing a variety of proteins needed in the exocytic process [80]. 
Specifically, PI4P enrichment allows for recruitment of proteins such 
as synaptotagmin and SNAREs, which are essential for exocytosis 
to occur [81-83]. Mechanistically, the membrane phospholipid 
concentration is important for actin polymerization, and imbalances 
result in defects in actin polymerization and thus in exocytosis [84]. 
Through regulation of lipid concentrations, cells can regulate rates of 
exocytosis. This is particularly important in maintaining proper rates 
of material movement across cells at the border of the blood brain 
barrier [85]. 

Since lipid imbalance is characteristic of diseases such as 
Alzheimer’s, Niemann-Pick type C Disease, and cardiovascular 
disease [86], a deeper understanding of the role of lipids within the 

cell is crucial. Future work should investigate in greater detail the 
mechanisms by which membrane lipid imbalance results in defects in 
intracellular trafficking. Additionally, a greater understanding of the 
relationship between membrane dynamics and protein recruitment 
is needed. Elucidation of the role of lipids in intracellular processes 
will lead to a greater understanding of therapeutic targets, which will 
enable more sophisticated treatment options for a variety of lipid-
related diseases. 
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