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Introduction
Landslide is one of the most destructive natural disasters. According to the study in [1] and 

[2], the deadliest landslide in the 20th century happened in Haiyuan, China, 1920; the incident was 
estimated to have fatalities of more than 100,000. Further, the impacts of landslides on properties or 
economics can also be crucial. For instance, Thistle landslide in Utah, 1983, costs more than US$600 
million (based on U.S. dollars in 1983) [3,4].

Many attempts have been made to model landslide activities for many decades in order to 
predict and, ultimately, mitigate the impacts of landslides. However, full analysis of landslide 
hazards, which involve complex poromechanics, transition of material behaviors from solid-like to 
fluid-like, extremely large deformations, material separations, etc., poses difficulties in numerical 
analyses. To circumvent the numerical difficulties, a full landslide process is typically broken down 
into three stages: pre-failure, failure, and post-failure, for each of which different numerical analysis 
or modeling techniques are adopted separately [5]. The analyses for these stages are usually regarded 
as slope stability analysis and run-out analysis[5].

Slope stability is commonly analyzed by the Limit Equilibrium Methods (LEMs) and Finite 
Element Methods (FEMs). LEMs were developed to analyze stability of embankments [6-8] 
and slopes [9-13] by considering certain equilibrium conditions of a pre-defined slip surface to 
determine the factor of safety, which is taken as an indicator for the stability of a slope. On the other 
hand, FEM, a powerful tool for solutions of partial differential equations, can be used to determine 
local strain/deformation of a slope. A few of many applications of FEM on slope stability analysis 
can be found in [14-16]. 

Popularly used numerical methods for the run-out analysis are the Smoothed Particle 
Hydrodynamics (SPH) and Discrete Element Method (DEM). SPH [17,18] uses kernel functions as 
the approximation functions for the solutions of the problems. However, it suffers from boundary 
deficiency and tensile instability due to the inconsistency of the kernel approximation [19-21]. Some 
examples of run-out simulations using SPH are [22-27]. DEM is a particle-based method, which uses 
an explicit temporal discretization scheme to determine the positions of particles, then calculates 
the interaction forces between the contacting elements, and obtains the velocity of each discrete 
element from the equation of motion [28]. There are also many DEM applications on simulations 
of landslide run-out, to name a few, [29-32]. Nonetheless, the simple element-to-element contact 
models that are typically used in DEM have to be carefully calibrated to the bulk material properties, 
and it is unclear that these models can be extrapolated to accurately capture landslide phenomena.

To combine capabilities and advantages of continuum-based method with discontinuum-based 
method, a combined finite/discrete element method [33] was employed to model the entire landslide 
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processes (i.e., from initiation stage to deposition stage) [34,35]. The 
landscape is first modeled by FEM, in which a solid constitutive 
model is incorporated. When certain strain criteria are satisfied in a 
local region and material damage starts to form and progress, DEM 
is taken to model such damaged region, solely accounting for the 
interaction between contacting elements. However, the combined 
method is difficult to verify mathematically due to the inconsistency 
between the two numerical techniques.

To overcome the aforementioned numerical issues within one 
mathematical framework, this paper presents the semi-Lagrangian 
Reproducing Kernel Particle Method (RKPM) for landslide 
simulations. The method is extended from the RKPM [36,37], in 
which the approximation function is constructed purely based on 
points and can meet desired order of consistency and smoothness; 
hence, it can analyze slope stability as effective as FEM, while higher 
order solution accuracy can be readily achieved by increasing the 
order of consistency. The semi-Lagragian RKPM is well-suited 
for extremely large deformation analysis since the approximation 
function is constructed in the current configuration [38,39], which 
naturally allows for material separation and avoids breaking down in 
the deformation mapping. The contact between damaged materials in 
the semi-Lagrangian formulation can be modeled by employing the 
contact detection algorithm in [40] with further enhanced accuracy 
using a level-set algorithm [41]. In addition, in order to adequately 
represent poromechanics of geomaterial, the saturated two-phase 
deforming porous media model following Biot theory [42-44] is 
incorporated into the framework.

The remainders of the paper are as follows: Mechanics of 
porous media is described in Section 2. Semi-Lagrangian RKPM 
for poromechanics is presented in Section 3. Stabilized nodal 
integration methods are reviewed in Section 4. In Section 5, the 
governing equations described in Section 2 are solved under the 
semi-Lagrangian RKPM framework. In Section 6, several numerical 
examples to verify the method including landslide simulations are 
shown. The concluding remarks are given in Section 7.

Deformable Porous Mechanics
The interaction between the interfaces of solid and fluid phases 

constitutes unique porous mechanical behaviors in granular 
materials. To account for the coupling effect between phases based 
on the hypothesis of continuum mechanics, the saturated multiphase 
formulation, extended from Biot theory [44], is employed. In this 
paper, a two-field formulation considering the solid displacement 
and pore water pressure is adopted and described in the following 
sections. 

Governing Equations

Under the assumptions of no phase change and isothermal 
condition, the governing equations, which consist of the balance of 
momentum equation and continuity equation, can be respectively 
expressed by

		   in 				    (1)

		  in   				     (2)

where σij is the total stress, bi is the body force, ρ is the total density 

of porous medium, ui is the displacement of solid skeleton, Ω is the 
problem domain, α is the Biot coefficient, P is the pore water pressure, 
and qi is the superficial velocity of water flow. M is regarded as Biot 
compressibility modulus and can be defined by

	  	    				     (3)

where n is the porosity, Ks is the bulk modulus of solid grains, and 
Kw is the bulk modulus of water.

The total density of porous medium ρ is described as

	  	      				     (4)

where ρs and ρw are the density of solid skeleton and water, 
respectively. The porosity n is the ratio between the void volume Vv 
and total volume V, that is

	  					     (5)

By introducing the Biotcoefficient α, the total stress σij can be 
decomposed as

	  					     (6)

where       is the effective stress of solid phase, and δij is the second-
order identity tensor. Since         is fully decomposed from the fluid 
phase, it can be computed using constitutive models of solid, for 
instance, elasticity or plasticity models. The Biot coefficient α serves 
as a means of effective stress reduction in porous media and can be 
interpolated by

	  					     (7)

where K is the bulk modulus of porous medium. 	

For isotropic porous media, the relationship between the flux 
or superficial velocity of water qi and pore water pressure P can be 
described by using Darcy’s law

	   					     (8)

where kw is the intrinsic permeability, µw is the dynamic viscosity 
of water, and gi is the gravity. 

The corresponding boundary and initial conditions of the 
governing equations (1) and (2) are defined as 

	  	 on 				    (9)

		  on				    (10)

	  	 on				    (11)
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	  		  in 			   (15)

where  and   are unit normal vectors in the outward direction 
of corresponding boundaries   and   .  is the prescribed traction.   is 
the prescribed displacement.  is the prescribed water inflow.  is 
the prescribed pore water pressure.   and   are Neumann and 
Dirichlet boundaries associated with porous medium in the current 
configuration, respectively.  and  are Neumann and Dirichlet 
boundaries associated with water in the current configuration, 
respectively.     is the initial value of displacement of the porous 
medium.           is the initial value of velocity of the porous medium.                                                                                                                                          
         is the initial value of pore water pressure.

Constitutive Equations

The Drucker-Prager plasticity model with associated flow rule 
in conjunction with a damage model [45-47] is adopted to represent 
geomaterial behaviors from material yielding to material separation. 
The yield function of Drucker-Prager can be defined as

	  	       				    (16)

where I1 is the first invariant of      . J2 is the second invariant of the 
deviatoric part of     . B and k are material constants.      is the effective 
stress before taking into account material damage, that is

	     					     (17)

where d is the damage parameter defined by

	     			   ;           		  (18)

c1 and c2 are material constants specifying critical point (when 
damage reaches maximum, for instance, d=1) and initiation point 
(when material starts to damage), respectively. η is the norm of the 
strain tensor (i.e.,  	              ). In this study, d is limited to be slightly 
less than 1 to sustain some compressive strength of the material after 
it is fully damaged.

The material parameters B and k of Drucker-Prager can be related 
to the cohesion c and friction angle ϕ of Mohr-Coulomb as

	  					     (19)

	  					     (20)

To take into account large deformation, the numerical integration 
of incremental constitutive equation is carried out by employing the 
approach proposed in [48]

	  					     (21)

where          is elasto-plastic-damage material tangent tensor.          	
              ,         are the transformation matrices denoted by	
	

	  					     (22)

with		   				    (23)

The incremental strain               is expressed as

	  					   

						      (24)

with	  	             				    (25)

The superscript n+0.5 denotes that the corresponding variables 
are evaluated from the configuration at time step n+0.5 [48]. 

Semi-Lagrangian RKPM
In the Lagrangian RKPM, mapping between current configuration 

and initial configuration is required, i.e., 	 . Here X refers 
to the Lagrangian coordinates, x refers to the Eulerian coordinates, 
and φ is the mapping function. This mapping between the two 
configurations may break down when extreme deformation occurs. 
To circumvent such issue, the shape functions of semi-Lagrangian 
RKPM is constructed in the current configuration, thus eliminating 
the necessity of mapping. The discretization (i.e., nodal points) of 
semi-Lagrangian RKPM is however still under Lagrangian description 
to track internal variables of the same material points at each time 
step. These properties of semi-Lagrangian RKPM, illustrated in 
Figure 1, are advantageous for problems involving extremely large 
deformation and material separation [39,42]. 

The shape function of semi-Lagrangian RKPM is expressed as

	  					     (26)

where         is the shape function of node I constructed in 
the current configuration and  	         is the nodal position of 
node I in the current configuration. The correction function  	
  	 and the kernel function   are also determined in the current 
configuration. The kernel function controls the smoothness and 
locality of the approximation function, and hence it should be selected 
depending on the characteristics of the problem, e.g., the order of 
Partial Differential Equations (PDEs). The 3-D kernel function is 
constructed by the product of 1-D kernel function

	  					     (27)

with	  					     (28)

Subscript a in the kernel function is a number defining the 
influence domain or so-called support size of the function. This 
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Figure 1: Comparison between the 2-D RK shape functions in (a) initial 
configuration, (b) current configuration of Lagrangian RKPM, and (c) current 
configuration of semi-Lagrangian RKPM.
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value is usually regarded after normalized by nodal distance. In this 
work, a cubic spline function, which is of class C2, is employed as the 
kernel function and a normalized support size of 1.5 is used, unless 
otherwise mentioned.

The correction function is introduced to enforce the reproducing 
conditions to achieve reproducibility for monomials up to the 
specified nth order consistency, that is

	  					     (29)

where  		  denotes the m-dimensional index, with 
its length defined as 	 ;  			                  
; 	      ;	 are the corresponding coefficient of the 
monomials 	 .

The coefficients b(x) are obtained by satisfying the nth order 
reproducing condition

	  		  ;  			   (30)

where NP is the total number of nodes. Linear basis (i.e., n=1) is 
used in this paper. By using equations (26) and (29) and imposing the 
reproducing condition in (30), the corresponding coefficients b(x) 
can be determined as

	  					     (31)

where M(x) is the moment matrix described as

	  					     (32)

and H(x-xI) is the vector of monomial basis functions.

Substituting equation (31) into equations (29) and (26), the shape 
function reads

	  					     (33)

In the semi-Lagrangian RKPM, the approximation of velocity vi 
is defined as

	  					     (34)

where         is the nodal coefficient of velocity. Taking temporal 
derivative of equation (34), the approximation of the acceleration ai 
is expressed as

	   					     (35)

where  	 is the nodal coefficient of acceleration.  	     is 
the change of the RK shape function with respect to time, due to the 
reconstruction of the shape function in semi-Lagrangian RKPM. This 
term is interpreted as a convection term to carry the information 
history during the transition between the old shape function and the 
new one. It is defined as

	  					     (36)

The temporal derivative of the correction function is omitted since 
the function is constructed by solving the corresponding coefficient 
b(x) under the current configuration [39,42]. By considering 
equations (27) and performing the chain rule, the temporal derivative 
of the kernel function  		  is obtained as

	  	         				    (37)

Stabilized Nodal Integration Methods
Domain integration is required when solving problems by 

Galerkin formulation. In FEM, this integration is usually carried out 
by Gauss integration because mapping to parental coordinates is easy 
with the presence of mesh. For meshfree methods such as RKPM, 
nodal integration is preferable to preserve the mesh-free property. 
The advantages of nodal integration are that it is computationally 
cheaper than Gauss integration and the internal variables are stored 
at nodes, which is beneficial for large deformation problems.

For demonstration purposes, consider the following equilibrium 
equation of an elasticity problem

		  in 				    (38)

		  on 				    (39)

	  	 on   				    (40)

where σij is the Cauchy stress, bi is the body force, nj is the unit 
normal vector in the outward direction of the Neumann boundaries 	
     , hi is the prescribed traction,        and  is the prescribed displacement 
on the Dirichlet boundaries        . The Galerkin formulation is described 
as

	  					     (41)

For Direct Nodal Integration (DNI), the locations of the 
integration points are taken at the same positions as nodal points, 
this causes rank deficiency and instability due to under-integration 
[49,50]. It also does not satisfy linear exactness and has suboptimal 
convergence, and hence the Stabilized Conforming Nodal Integration 
(SCNI) was proposed in [51,52] to remedy such issues. SCNI 
introduced the assumed strain         to avoid the rank deficiency of the 
stiffness matrix. The assumed strain in SCNI is the averaged strain 
over a conforming nodal representative domain, which is usually 
constructed by using Voronoi diagram (Figure 2a). The assumed 
strain        can be expressed as 

	  					     (42)

where	  				    (43)

with	  					     (44)

and VL and    are the volume and boundary, respectively, of 
the nodal representative domain of node L. dI is the vector of 
corresponding nodal coefficient of displacement or so-called 
generalized displacement.

The method satisfies integration constraints and results in 
achievement of the first order accuracy of solutions. The integration 
constraints are described as

		  for   				    (45)

		  for				    (46)

Nevertheless, the requirement of conforming nodal 
representative domains in SCNI is problematic when encountering 
large deformation, fracture, separation, or penetration problems. The 
Stabilized Non-conforming Nodal Integration (SNNI) was proposed 
by [53] to handle such problems by allowing nodal representative 
domain to be pre-defined and independent of nodal distribution, thus 
eliminating the conforming restriction, as can be seen in Figure 2.

( ) ( )
n

| | 0
( ); I I bC α

α
α =

− −= ∑x x x x x x

1 2( , , , )mα α α α= 

1

m
ii

α α
=

≡ ∑ 1 2
1 1 2 2( ) ( ) ( ) ( ) m

I I I m mIx x x x x x αα αα ≡ − −− −x x 

1 2, , , m
b bα α α α≡



( )bα x
( )I

α−x x

1
( )

NP

I I
I

α α

=

Ψ =∑ x x x nα ≤

1( ) ( ) ( )−=b x M x H 0

( ) ( ) ( )
1

( )
NP

T
I I I

I
a

=

=  − − Φ −∑ HM x Hx x x x x x

( ) ( ) ( )1( ) ( ) I
T

I Ia
−Ψ = − Φ −x H 0 M x H x x x x

1
( , ) ( , ) ( ) ( )

NP
h h
i i I iI

I
u t v t v t

=

= = Ψ∑x x x

( )iIv t

( ) ( ) ( ) ( ) ( ) ( )( )
1

,   a ,   a  
NP

h h
i i I iI I iI

I

t t t vu t
=

= = Ψ + Ψ∑x x x x

( )a iI t ( )IΨ x

( ) ( ) ( )  ;I I IaCΨ = − Φ −x x x x x x

( )( ),Ia tΦ −x x X

( ) ( )
( )

( )
( )

( )( )1-D3

1

,,1       
,

i i Ia i i i I
I

i i i i i I
a

x x tz x x t
z ta x x t=

 ∂ −∂Φ −
− = ⋅ ⋅ ⋅  ∂ ∂− 

Φ ∏
X

x x
X
X



, 0ij j ibσ + = Ω

jij ihnσ = hΓ

g
i iu u= gΓ

hΓ g
iu

gΓ

,

h

h h h h
i j ij i i i iu d u h d u b dδ σ δ δ

Ω Γ Ω

Ω = Γ + Ω∫ ∫ ∫

h
ijε

h
ijε

LΓ

( ) 0Ii L L
L

b V =∑ x { }: supp( )II Ψ ∩ Γ = ∅

( ) ( ) ( )
h

Ii L L I
L

inV db
Γ

Ψ= Γ∑ ∫x x x { }: supp( ) hII Ψ ∩ Γ ≠ ∅

( )
1

( )
NP

h
L I L I

I =

= ∑å x B x d

1 3 2

2 3 1

3 2 1

( ) 0 0 0 ( ) ( )
( ) 0 ( ) 0   ( ) 0 ( )

0 0 ( ) ( ) ( ) 0

I L I L I L
T
I L I L I L I L

I L I L I L

b b b
b b b

b b b

 
 =  
  

x x x
B x x x x

x x x

( ) ( )1)  (
L

I iIi L
L

b n d
V Γ

Ψ= Γ∫x x x



Citation: Siriaksorn T and Chi S. Multi-field Semi-Lagrangian Reproducing Kernel 
Particle Method for Landslide Simulation. SM J Biomed Eng. 2017; 3(2): 1014s.

Page 5/10

Gr   upSM Copyright  Chi S

 (a) (b) 

Figure 2: 2-D nodal representative domains of (a) SCNI and (b) SNNI.

        (a) (b) 
Figure 3: Subdomains of (a) a nodal representative domain of SCNI using 
Voronoi diagram and (b) a nodal representative domain of SNNI.

Despite the stabilization in SNNI and SCNI, low energy modes 
may still be triggered in transient problems and cause instability; this 
calls for an additional stabilization [54,55]. The Modified Stabilized 
Conforming Nodal Integration (MSCNI) and Modified Stabilized 
Non-conforming Nodal Integration (MSNNI) offer a penalty-type 
stabilization term, which is constructed based on subdomains of each 
nodal representative domain, as shown in Figure 3.

The discrete form of the internal energy of (41), after including 
the additional stabilization term is given as

 						      (47)

Where Cijkl is elastic material tangent tensor. VI and Vc are nodal 
volumes of node I and subdomain c, respectively.      is the number of 
subdomains in the nodal representative domain of node I.  	          and 	
	 are the smoothed strains of node I and subdomain c, 
respectively.      is the stabilization parameter ranging between 0 and 1.

In this work, the MSNNI is employed. For more detailed discussions 
on domain integration issue in meshfree methods, see [56].

Semi-Lagrangian RKPM for Saturated Deformable 
Porous Media

Using Galerkin formulation and applying the boundary 
conditions in (9) - (12), the variational equations of the governing 
equations (1) and (2) are obtained as

	  					     (48)
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RKPM in space domain and explicit temporal discretization schemes 
in time domain. Dirichlet boundary conditions are imposed by the 
boundary singular kernel method [57]. 
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where     and    are generalized displacement and pore water 
pressure, respectively.      and      are the semi-Lagrangian shape 
functions associated with displacement and pore water pressure. In 
mixed formulation, the choices of the interpolation order of  	
and  	 are critical, as the numerical instability can occur if the inf-
sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition [58-60] is 
violated. One way to remedy the issue is to use the reduced integration 
technique as stated in [43]. The nodal integration method employed 
here (i.e., MSNNI) is similar to the reduced integration method with 
the additional stabilization for the low energy modes, as described in 
previous section; hence, the equal-order interpolation for  	  and	
is selected for simplicity and efficiency.The spatial derivatives of 
equations (51) and (52) with respect to current configuration take the 
following forms:

	  					     (54)

	  					     (55)

Applying equations (34), (35), and (51)-(55) in the variational 
equations (48) and (50), the semi-discrete system of equations read
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 						      (57)

Temporal Discretization

In time domain, the displacement is discretized by central 
difference scheme

	  					     (58)

	  					     (59)

Where ∆t is time step size. The approach explicitly yields  	
at the beginning of time step n+1. The predicted velocity is defined as

	  					     (60)

Pore water pressure is temporally discretized by forward Euler 
method and can be evaluated at the beginning of time step n+1 as

	  					     (61)

Rewriting equations (56) and (57) into matrix forms
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	  					     (63)

with	  					     (64)

then applying temporal discretization from equations (58) - 
(61) by including mass proportional damping C, the fully discrete 
equations read

	  					     (65)

	  					     (66)

The effect of convection matrix G on the accuracy of the solution 
is negligible [53]. The lumped mass scheme by the method of row 
summation is employed for M and S to acquire diagonal matrices. This 
can avoid solving system of equations and improve computational 
efficiency. In this paper, 5% mass proportional damping is used for C.

At each time step,          is solved from equation (65), then  	
is updated by equations (59) and (60), and substituted into equation 
(66) to determine 	      . 

Numerical Examples
Single-Field Semi-Lagrangian RKPM for Slope Stability 
Analysis

The semi-Lagrangian RKPM for landslide simulation is verified 
by comparing its result with the result from FEM [61]. In [61], under 
finite element framework, the Drucker-Prager parameter related to 
cohesion is reduced until the slope (Figure 4) is unstable according 
to the slip circle analysis. In this study, the critical value of cohesion 
from [61] is adopted (Table 1) to compare the slip surface when slope 
is unstable. The damage model incorporated in the framework is 
used as a means to identify the slip surface. Domain integration is 
carried out by MSNNI with number of subdomains       equal to 2 
and stabilization parameter equal to 0.5 for each nodal representative 
domain. Natural and frictional kernel contact algorithms with a 
level set are employed to represent contacts between particles. The 
problem is discretized by 25,588 nodes.
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Figure 4: Schematic of the landscape.

Figure 5: Comparison between the results from FEM [61] (black) and semi-
Lagrangian RKPM (color).

Table 1: Material properties of the landscape.

Young's Modulus (Pa) , E 2x108

Poisson's Ratio, V 0.25

Cohesion (Pa), C 2000

Friction Angle (°), ϕ 20

Damage Parameter: Initiation, C2 0.05

Damage Parameter: Critical, C1 1

Density (kg/m3), ρ 2039

The results from FEM [61] and this study are shown in Figure 5. 
The slip surface and displacement contour of the result from FEM 
[61] is illustrated by black solid lines and arrows, while the result from 
semi-Lagrangian RKPM is shown in color. From Figure 5, the semi-
Lagrangian RKPM yields similar location of slip surface compared 
with FEM. The result verifies that the semi-Lagrangian RKPM is 
capable of effectively analyzing the slope stability.

One-Dimensional Consolidation

A 1-D consolidation problem subjected to a step load (Figure 6a) 
is analyzed to verify the performance of two-field semi-Lagrangian 
RKPM with MSNNI for saturated porous media. Stabilization 
parameter of 0.5 with 2 subdomains for each nodal representative 
domain is used. The specifications of the problem are shown in 
Table 2. The problem is discretized by 183 nodes (Figure 6b). Linear 

 
                                                    (a)                               (b)

Figure 6: (a) Schematic and (b) nodal distributions of the 1-D consolidation.
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Figure 7: Comparison of the results from semi-Lagrangian RKPM and the 
analytical solution at point A.

elasticity is used to represent material behavior. The bottom of the 
problem is impervious while water can flow out freely on the top 
boundary (P=0). The pore pressure at the point of interest A (Figure 
6a), is evaluated at the time from 0 to 30 seconds. The results from this 
study are compared with the analytical solution [43]. From Figure 
7, the result from semi-Lagrangian RKPM using explicit temporal 
discretization exhibits oscillations at the beginning; however, after 
the oscillations taper off, the result is in good agreement with the 
analytical solution. Note that the oscillations at the beginning are from 
the use of explicit temporal discretization, which can be alleviated 
by using implicit temporal discretization with numerical damping 
(Newmark algorithm with β=0.3025 and γ=0.6) as discussed in [43] 
and as shown in Figure 7.

Two-Field Semi-Lagrangian RKPM for Landslide Simulation

To demonstrate the performance of semi-Lagrangian RKPM, the 
slide of a vertical-cut slope (Figure 8) is simulated. Semi-Lagrangian 
RKPM with MSNNI for saturated porous media is employed. The 
stabilization parameter and number of subdomains are the same as 
previous problems. The behaviors of solid phase of porous media 

Figure 8: Schematic of the vertical-cut slope.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Two-field semi-Lagrangian RKPM landslide simulation of a vertical-cut slope.

Table 2: Specification of the 1-D consolidation problem.

Young's Modulus (Pa), E 3 710×

Poisson's Ratio, ν 0.2

Density (kg/m3), ρ 1700

Biot Coefficient, α 1

Biot Compressibility Modulus (Pa), M 3.33 810×
Permeability            , 1.02 610−×

Load (Pa), T0

(Full load at 0.1ft t= =  s)

2m
Pa s

 
 ⋅ 

w

w

k
µ

( )1000sin 0.5 ft tπ
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Figure 10: Experimental result from a centrifuge test of a vertical-cut 
slope (grid size is 5 mm) made by soft clay with 150 times of gravitational 
acceleration [62].

and DEM or SPH for the post-failure or propagation stage of a 
landslide event. Although the construction of the semi-Lagrangian 
shape functions requires more computational effort, the fulfillment 
of consistency condition of the approximation ensures better solution 
accuracy. Furthermore, with the employment of the stabilized nodal 
integrations (SNNI and MSNNI) in the Galerkin formulation, the 
method takes advantage of using low order integration schemes while 
suppressing the instability due to spurious low energy modes. 

The saturated multiphase porous model following the Biot theory 
is formulated in the u-p semi-Lagrangian RKPM, where the solid 
phase of porous media is modeled by the Drucker-Prager and damage 
models, to properly represent geomaterial behaviors. The explicit 
central difference time integration is adopted for dynamics analyses. 
The temporal stability of the central difference scheme in the u-p 
RKPM formulation will be the ongoing study. The results obtained 
from the present method are verified against analytical solutions 
and FEM results, which demonstrates that the method effectively 
determines the slip surface and pore water pressure. It is worthwhile 
to note that despite adopting an equal-order approximation scheme 
for the saturated u-p formulation, no significant pressure oscillation 
has been observed in the numerical study. The proposed method 
is validated with experimental results. The slip surface, failure 
pattern, as well as deposits in the simulation qualitatively agree with 
experimental data.
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