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Introduction
Wearable sensors have been widely used in a clinical context for disorder detection, treatment 

efficiency assessment, home rehabilitation, and healthcare research [1]. Wearable sensors such as 
ECG, EEG and EMG are designed to process bio-potential signals observed at various locations 
on the human body. The collected data from these sensors can be transmitted to other devices or 
the cloud for remote home monitoring since modern AI, machine learning, and signal processing 
techniques enable computer based automatic analysis to assist diagnosis. Wearable sensors are 
used in uncontrolled conditions and have a simplified hardware design at the expense of signal 
quality. Since wearable sensors provide more flexibility with fewer physical limits to users, they 
are often used in homes and for remote monitoring where no medical professionals are involved. 
Consequently, the activity of the wearer results in more noise than hospital-based measurements. In 
addition, fewer ADC bits, a lower sampling rate due to transmission speed, power constraints, and 
physical size of the sensors are other concerns. In addition, muscle movement and sweat can cause 
noise. Thus, measured data from wearable sensor systems is a combination of various types of noise 
which are difficult for computer-based automatic diagnosis systems to process accurately.

A number of investigations have examined the sources of noise in most wearable sensors [2-5]. 
For instance, it has been shown that tissue/body fluid movement during measurement introduced 
motion artifacts. In addition, electrode-body interface noise (e.g., offset voltages occurring in the 
electrodes for ECG and EEG), flicker noise and white noise in circuits also exist in wearable sensors 
measurements [2-5]. De-noising techniques in the sensor hardware design, differential pairs, and 
common-mode designs have been adopted in the past to reduce the noise [6-8]. However, none 
of these remove noise completely: they only reduce the amplitude. It is important that none of 
these approaches can effectively remove motion artifacts which generally introduce large amplitude 
noise. Several different filtering techniques have been developed to remove or attenuate noise. 
For example, low pass, high pass, and band pass filters remove components within a particular 
frequency range. Thus, noise which exists in that frequency range will be filtered. However, useful 
information may also be removed. Adaptive filters [9] utilize a reference signal which must resemble 
the desired input to remove the noise via iterative computation that minimizes error using Least 
Mean Square or Recursive Least Square algorithms. Adaptive filtering needs a good reference 
signal which may not always be available or with high penalty in a wearable sensor system. For 
example, to adaptively cancel motion artifacts from ECG or PPG, an extra accelerometer sensor is 

Research Article

Noise-Invariant Component 
Analysis for Wearable Sensor based 
Electrocardiogram Monitoring System
Kemeng Chen1, Linda S Powers1,2,3* and Janet M Roveda1,3

1Department of Electrical and Computer Engineering, University of Arizona, USA
2Department of Biomedical Engineering, University of Arizona, USA
3BIO5 Institute, University of Arizona, USA

Article Information

Received date: Apr 27, 2018 
Accepted date: May 25, 2018 
Published date: May 29, 2018

*Corresponding author

Powers LS, Department of Electrical and 
Computer Engineering, The University 
of Arizona, 1230 E. Speedway Blvd, 
Tucson, Arizona, 85721, USA, 	
Tel: 520-621-7634; 			 
Email: lspowers@email.arizona.edu

Distributed under Creative Commons 
CC-BY 4.0

Keywords Noise invariance; Noise 
tolerance; Wearable sensors; 
Electrocardiogram; Automatic diagnosis

Abbreviations DSP: Digital Signal 
Processing; ECG: Electrocardiogram; 
EEG: Electroencephalography; 
EMG: Electromyography; PPG: 
Photoplethysmogram; QRS: Q: Q-wave, 
R: R peak, S: S-wave; AI: Artificial 
intelligence;  ADC: analog to digital 
converter

Abstract

Sensors have been widely used in various data acquisition systems, especially for medical applications. 
However, once developed for wearable use, these have suffered from various types of noise which greatly 
degrade data quality and consequently, the reliability. Low data quality is a major obstacle for computer-based 
diagnosis. Thus, the noise tolerance ability plays a crucial role in wearable sensor based data acquisition and 
analysis. This work proposes a novel method: noise-invariant component analysis (N-ICA), to expose the 
influence of noise on this data and provides noise removal and dimensionality reduction. The proposed N-ICA 
based approach extracts information from data which undergoes minimal change with noise and directly shows 
the extent to which the true information has been corrupted by noise. This work also implements a simulated 
wearable sensor based ECG automatic diagnosis system together with a noise generator to validate N-ICA 
noise tolerant enhancement. Test data is selected from the MIT-BIH Arrhythmia Database. The simulated ECG 
monitoring system achieves 99.42% accuracy in classifying eight types of heartbeats. Experimental results 
demonstrate that the signal-to-noise ratio is improved by applying N-ICA based on ECG data contaminated 
by five noise sources. QRS detection accuracy is also improved to above 95% under the highest noise level 
tested. Dimensionality reduction reduces the data to 6.5% of the original size. Finally, diagnostic accuracy of four 
different classifiers is significantly improved when applied in our simulated ECG automatic monitoring system.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Citation: Chen K, Powers LS and Roveda JM. Noise-Invariant Component Analysis 
for Wearable Sensor based Electrocardiogram Monitoring System. SM J Biomed Eng. 
2018; 4(1): 1025. Page 2/11

Gr   upSM Copyright  Powers LS

usually added to provide the reference signal [8,10]. Savitzky-Golay 
filtering [11] smooths a signal by approximating it to a polynomial 
function. Ideally, the polynomial would only fit the signal and 
not the noise. However, some particular noise is also a smoothed 
signal and thus may be preserved after polynomial fitting. Newly 
developed methods, e.g., [12], utilized alexander polynomials and 
R-L differential equations of fractional calculus to minimize noise. In 
summary, a method is needed to study and analyze the characteristics 
of noise in wearable sensors and provide the capability of strong noise 
tolerance for the wearable sensor data acquisition system. This paper 
proposed a method to extract the invariant information of feature 
to differentiate true information from noise. The rest of the paper is 
organized as follows: section two presents method of noise-invariant 
component analysis. Section three introduces ECG, noise and the 
monitoring system architecture used in this work including R peak 
detection, feature extraction, and heartbeat classification. Section four 
introduces the experiments design, data preparation, and evaluation 
metrics for verification. Finally, the conclusion is section five.

Methods
Signals collected from wearable sensors in medical systems are 

usually corrupted by at least one noise source. These noise sources 
stem from the subject being measured and/or the data acquisition 
system and are finally reflected on the acquired signal. To deal with 
this problem in wearable sensor systems, we propose a method termed 
N-ICA. The goal is to differentiate between true information and noise 
by utilizing the invariant feature of true information in the signal. 
As the true information is generated by a biological mechanisms 
(in medical applications), randomness is relatively low and the true 
information collected over time is often self-correlated. For example, 
electrocardiogram signals generally repeat themselves. As noise 
and the true information are generated by different mechanisms, 
they could be uncorrelated under some projections, thus showing 
different characteristics. Based on the above assumptions, we isolate 
the uncorrupted portion of the measured information.

We define the noise-corrupted signal collected from wearable 
sensors as a time series x={x1..., xn} where each xi is digitized data 
collected at time stamp i. Φ is a function that maps x to another 
domain (e.g., wavelet transform) and represents x as α coefficients. 
We also define a function δ which evaluates the variation of α. Finally, 
N-ICA is defined as a subset of α which exhibits minimal changes 
with noise. This is based on an assumption that noise damages only a 
portion of the true information; otherwise, N-ICA would be an empty 
set. Equation (1) mathematically defines N-ICA where α=Φ(x) and K 
is a subset of S:

  		             				                (1)

From equation (1), coefficients in subset K preserve the 
uncorrupted information as much as possible and we define it as the 
Noise-Invariant Components. However, when the true information 
is completely destroyed by noise, there could be very few or no Noise-
Invariant Components (K is an empty set). N-ICA directly shows the 
extent to which true information has been corrupted by noise and 
aids in separation of corrupted and uncorrupted components. Thus, 
N-ICA aids in separation of noise affected coefficients from those 
less affected or not affected at all. As noise usually exhibits certain 

statistical characteristics, coefficients affected by noise (e.g., Noise-
Variant Components) may also have similar properties, assuming Φ 
is a linear mapping. Thus, these statistical characteristics can be used 
to enhance noise removal. Assuming Φ has an inverse projection or 
transform Φinv such that x= Φinv (α), L is a function used to attenuate 
the effect of noise on noise-variant coefficients and θ is the parameter 
learned from the noise. The de-noising process can be expressed as

			              			              

(2)

Where x̂  is the de-noised data, αj are noise-invariant coefficients, 
and αi belongs to the noise variant coefficients. The de-noised data 
is obtained by inverse transform of both noise-invariant coefficients 
and processed noise-variant coefficients.

In terms of classification based automatic diagnosis, information 
used in a particular pattern for diagnosis is only the portion of the data 
which makes it an invariant identity even when corrupted by noise. 
Thus, extracted N-ICs are also good indicators of both classification 
accuracy and reduced data dimensionality when data is corrupted by 
noise.

Wearable Sensor Based ECG Monitoring System
ECG measures heart movements through electrical bio-

potential changes via electrodes attached to skin. Bio-potentials 
from electrodes are then amplified, filtered and converted to digital 
format for further processing. Generally, there are five kinds of major 
noise sources in an ECG acquisition system: powerline interference, 
instrument noise, baseline wander (due to respiration), motion 
artifacts, and muscle contraction noise [13]. Powerline interference 
is from the electromagnetic field generated mainly by AC power used 
for artificial light which persistently exists during monitoring. It can 
be modeled as a combination of sinusoid signals centered around 60 
Hz (e.g., U.S.) with random phases. Instrument noise typically from 
electronic circuits is usually modeled as white noise. Baseline wander 
mainly comes from respiration which results in roughly slow periodic 
noise (based on the assumption that ECG electrodes are placed on the 
chest) that can be modeled as a sinusoid waveform with a random 
period. Motion artifacts are a consequence of changes in electrode-
skin impedance due to electrode motion from human movement 
such as talking, jumping, running, etc. Since people wear wearable 
sensors in their daily life, motion noise results from a combination 
of multiple random motions. Thus, measured motion noise shows 
non-repeatable patterns and exhibits randomness in both amplitude 
and shape (pattern). Muscle contraction noise is generated by bio-
potential changes caused by muscles other than the cardiac muscle. 
Since ECG is the reflection of bio-potential changes created by the 
cardiac muscle, other muscles such as a chest muscle which is even 
closer to electrode can generate strong bio-potential changes. This 
kind of noise consists of sharp spikes reflected in the ECG waveform 
which sometimes resembles the R peaks that can be modeled as spikes 
at random locations whose amplitude is also randomized within a 
range. Usually people using wearable ECG monitoring devices are 
more active, muscle contraction noise is expected to be stronger and 
more frequent than for in-hospital measurements. This noise greatly 
degrades the acquired ECG signal quality and negatively affects the 
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performance of subsequent computer automatic processing analysis. 
Thus, a strong noise tolerant ability is the key for the design of a 
wearable sensor. Figure 1 shows the general architecture of ECG 
monitoring system. 

According to American Health Association, useful information 
in ECG mainly occurs from 0.67 to 40 Hz [14]. In particular, P-T 
waves concentrate at low frequency bands while the QRS complex 
occupies the high frequency band. Figure 2 displays six pairs of Time-
Frequency Spectra calculated by continuous wavelet transform and 
corresponding ECG measurements corrupted by different kinds of 
noise. Each pair contains two figures: ECG plot (top) and the Time-
Frequency spectrum (bottom). The ECG segment is eleven seconds 
long and corrupted by noise. The top left pair displays the effect of 
power line interference which is mainly concentrated around 60 Hz. 

The top middle pair is the instrument noise. The top right and bottom 
left pairs are the baseline wander and motion artifacts, respectively. 
These generally affect the coefficients at lower frequencies. The 
bottom middle figure is the Time-Frequency spectrum for muscle 
contraction noise and the bottom right is the mixed noise composed 
of all kinds of the noise in the figure. As stated in the above section, 
certain kinds of noise only consistently affect a portion of coefficients 
which are a subset of all coefficients. Thus, characteristics of the 
effect of noise in the Time-Frequency domain can be captured and 
then used to remove noise. Figure 3 displays the de-noising example 
on an ECG signal with mixed noise. The black line is the original 
uncorrupted ECG signal and the blue plot represents ECG corrupted 
by mixed noise. Red plot is the de-noised ECG signal. As observed in 
Figure 3, noise has been greatly attenuated and critical information 
of the original ECG signal has been preserved after de-noising. Note 
that the red plot does not perfectly overlap the black line. The reason 
is that a subset of coefficients results from noise (Noise-Variant 
Components) also has overlap with coefficients that represent the true 
ECG information. Thus, when removing noise by manipulating noise 
variant components, the true information of ECG may also be altered. 
Detailed results of de-noising using real ECG data corrupted by five 
noises with quantitatively evaluation of this method is presented in 
results and discussion section.

Four step processing flow for automatic ECG processing 
and analysis

The goal of wearable sensor data acquisition system is not only 
to collect data with good quality, but also to understand the data, 
e.g., clustering or classification based preliminary diagnosis. To 
perform these tasks, we extracted noise-invariant components as the 
most informative part of data (the unique identification of features) 
and also reduce data dimensionality. In the ECG data acquisition 
system, a four-step processing flow is designed to perform automatic 
heartbeat classification based diagnosis. Input for this flow is the raw 

Figure 1: General architecture of a wearable sensor system for ECG 
monitoring.

Figure 2: ECG signals corrupted by synthetic noise and the corresponding Time-Frequency spectrum. Below each noise label are the ECG and corresponding 
Time-Frequency spectrum. In the ECG plot, the vertical axis is the voltage signal amplitude. The frequency (vertical) axis is algorithmic scale as indicated by white 
dashed lines. The color indicates the amplitude of the time-frequency component with lighter color indicating larger amplitude.
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ECG signal and the output is the associated heartbeat classification 
based diagnostic results. The four-step flow comprises de-noising 
to remove potential noise, detecting R peaks to isolate heartbeat, 
extracting features of the heartbeat to capture critical information 
and reduce dimensionality, and finally, classification of different 
types of heartbeats for automatic diagnosis. Figure 4 displays the 
block diagram of the proposed flow. In addition, the proposed flow 
is also flexible to employ new algorithms at each stage to enhance 
performance.

R peak detection

R peak detection is the first step in calculating other ECG metrics 
such as heart rate, heart rate variability, etc. which determines the 
performance of many applications such as stress management [15], 
emotion tracking [16], etc. Thus, R peak detection accuracy plays a 
critical role in the performance of the ECG automatic monitoring 
system. R peaks are detected by the time stamp in the input ECG 
time series in order to locate each potential heartbeat. While several 
methods to extract R peaks have been proposed in the literature, our 
R peak extraction algorithm is based on the classic Pan-Tompkins 

QRS extraction algorithm [17]. The Pan-Tompkins QRS extraction 
algorithm demonstrated very high accuracy (99.3% when tested on the 
MIT-BIH Arrhythmia database [17]). However, when noise is present 
in the signal, performance of R peak detection can be degraded. Thus, 
the goal of noise removal is not only to recover the general shape of 
each heartbeat, but also maintain the R peak information. Detailed 
experimental results of QRS detection with noise will be discussed in 
section four.

Feature extraction

The feature extraction step extracts the most important information 
from the data to provide a more concise form of the original 
information. The main goals include: (1) reduce dimensionality 
of raw data; (2) exclude influence from noise; (3) distinguish the 
difference between different types of heartbeats; and (4) enhance 
the similarity between heartbeats of the same type. Dimensionality 
reduction determines the feature vector size for the classification 
step, which in turn reduces the amount of computation performed by 
the classifier [18]. The feature extraction step attenuates the effect of 
noise since the Noise-Invariant Component or Coefficients (N-ICs) 

Figure 4: Block diagram of the proposed four-step ECG processing flow.

Figure 3: ECG corrupted by mixed noise after de-noising procedure.
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are used as the extracted feature vectors. Thus, N-ICs preserve the 
heartbeat information but exclude most of the influence of the noise. 
Since we have shown that noise is observed in the Time-Frequency 
domain, we compute N-ICs in the Time-Frequency domain. We also 
adopt the discrete wavelet transform [19] instead of the continuous 
wavelet transform to reduce computation. The Discrete Wavelet 
Transform uses a pair of orthogonal filters to decompose the signal 
into two sub-bands of different frequencies (approximate signal 
at low frequency and detailed signal at high frequency). Each sub-
band of the signal is half in size of the original signal. By repeating 
the decomposition onto the low frequency band signal obtained from 
the previous decomposition, the discrete wavelet transform provides 
a comprehensive view of the signal from a frequency perspective. 
Figure 5 (top 2 rows) displays eight types of different heartbeats. 
These heartbeats are calculated by averaging multiple heartbeats of 
the same type. Figure 5 (bottom 2 rows) displays the N-ICs as the 
extracted feature for each type of heartbeat.

Heartbeat classification

After de-noising, R peak detection, and feature extraction step, 
ECG data is transformed into feature vectors of each beat. A classifier 
is used as the last step to produce automatic heartbeat diagnosis. 
Given training data in the format of heartbeats and corresponding 
diagnosis, the goal of the classifier is to predict the diagnosis of 
heartbeats through a training process which minimizes the error 
between correct diagnosis and predicted diagnosis. Our analysis 
adopts four widely used classifiers to classify each heartbeat (Neural 
Network, Support Vector Machine (SVM), Naive Bayes Classifier, 
and Nearest Neighbor). Mathematical details of the four classifiers 
can be found in supplementary material.

Results and Discussion

To validate performance of the proposed N-ICA with de-noising, 
R peak detection, and classification based diagnosis, we implemented 
a simulated wearable sensor based ECG monitoring system with 
our proposed four step processing flow using MATLAB 2016b. The 
simulated system includes a noise generator which can generate five 
types of noise as described in the third section, N-ICA based de-
noising block, R peak detection block, feature extraction block, and 
classification block containing four different classifiers. By using 
a noise generator, it is possible to quantitatively control noise and 
preserves ground truth signal for performance evaluation. We also 
compare the performance with other related work. Ground truth 
data used in this work are from the MIT-BIH Arrhythmia Database        
[20-23]. ECG from this database is Holter recordings digitalized at 
360 Hz used as ground truth wearable sensor measured ECG. In this 
work, we selected normal beats together with seven kinds of abnormal 
beats including atrial premature beats, aberrated atrial premature 
beats, ventricular escape beats, nodal (junctional) premature beats, 
nodal (junctional) escape beats, left bundle branch block beats, and 
right bundle branch block beats from files 209, 201, 207, 234, 222, 
109, 118, respectively. This selected testing data contains a total of 
8118 heartbeats.

To quantitatively measure the effectiveness of de-noising, we use 
the Signal to Noise Ratio (SNR in dB) as a numeric metric to compare 
corrupted ECG and de-noised ECG with ground truth ECG. We also 
adopted the Percent of Root Mean Square Error (PRMSE) as the 
metric to quantitatively control noise. The PRMSE is the percent of 
Root Mean Square Error (RMSE) as defined in equation (3):
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Figure 5: Typical heartbeats (row one and two) calculated by averaging heartbeats of the same type and noise-invariant components based feature extraction  
(row three and four) where top 15 noise-invariant components are selected.
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The numerator is the root square error and denominator is the 
square root of the signal energy. Thus, PRMSE can also be interpreted 
as square root of noise energy over signal energy. PRMSE equals 
zero means no noise. When PRMSE is one, the energy of the noise 
is equal to the energy of the signal (SNR is zero (dB)). Figure 6 (top 
row) displays the result de-noising of four types of noise and their 
combination. Our results do not include powerline interference since 
it could be filtered out with a band stop or notch filter at around 60Hz. 

Generally, among the four types of noise and their combination, 
de-noised ECG shows much higher SNR than the noise-corrupted 
data. In particular, since baseline wander mainly exists in the 
low frequency range, the frequencies of the rest data are all noise-
invariant components which preserve more information compared 
with other noise. This demonstrates that the de-noising block shows 
better performance on baseline wander noise than other noise.

On average, the SNR of the instrument noise, motion artifacts, 
muscle noise, and mixed noise is around 60 dB when PRMSE is 10% 
(46.05 dB) and decreases to around 35 dB when PRMSE is 30% (24.08 
dB) as shown in Table 1. SNR changes within the above range are 
roughly a linear decrease as shown in Figure 6 (top plot). The SNR 
decrease rate slows down after PRMSE equals 30% and exhibits 
approximately a linear decrease from PRMSE equals 30% to 100%. 
Table 1 shows the numerical results selected at critical points.

Noise has a strong impact on the accuracy of QRS detection 
which identifies the R peak location of each heartbeat. To evaluate the 

accuracy of R peak detection, accuracy in this work is defined as one 
minus the number of false positives and the number of false negatives 
as shown in equation (4):

 
						                 

(4)

Where N is the total number of beats in test data. FP is false 
positive which indicate detecting a wrong location as an R peak 
and FN is false negative which means that the R peak location is not 
detected. Figure 6 (bottom) shows R peak detection accuracy on both 
noise-corrupted ECG data and de-noised ECG data.

Figure 6 bottom row displays the R peak detection results. For 
each plot, the horizontal axis is PRMSE from zero to one. The vertical 
axis is the R peak detection accuracy defined using equation (10). The 
red dot is the accuracy of de-noised ECG data and the blue circle is 
that for the noise-corrupted ECG data. As observed from Figure 6, 
different noise has a very different impact on the R peak detection. 
Instrument noise and muscle contract noise contains many sharp 
spikes which resemble the R peaks. These are very likely to confuse 
the R peak detection algorithm and significantly degrade detection 
accuracy. As shown in Table 2, accuracy decreased to 78.53% for 
instrument noise and 25.39% for muscle noise when the SNR is 
zero (dB). Particularly, accuracy tested on muscle noise decreased 
much faster than that of other noise. In contrast, the baseline wander 
artifact is generally slow curves that change the amplitude of ECG 

Figure 6: De-noise performance (upper row) and R peak detection accuracy (lower row). The horizontal axis is the PRMSE from zero to one with increments of 
ten percent. The vertical axis is the SNR in dB. Blue circles indicate the noise-corrupted ECG signals and red dots represent de-noised signals.

Table 1: De-Noise result for each type of noise in (dB).

PRMSE (%) SNR (dB) Instrument Noise Baseline Wander Motion Artifacts Muscle Noise Mixed Noise

10% 46.05 59.69 81.64 57.08 59.24 62.7

30% 24.08 35.96 59.3 35.84 35.65 37.67

60% 10.22 26.94 44.56 29.85 26.52 28.77

100% 0 18.98 34.4 27.05 18.41 21.46

Numerical results of de-noising using five kinds of noise. Left column is PRMSE and SNR (horizontal axis of Figure 6 upper plot). Corresponding SNR values after 
de-noising for five kinds of noise are listed under noise names in the remaining columns.

100% 1 FP FNaccuracy
N
+ = × − 

 
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baseline which has very small negative impact on R peak detection 
accuracy. As shown in Table 2, the R peak detection accuracy of these 
two different kinds of noise remains higher than 95%, even when 
SNR is zero. In general, de-noising maintains the R peak detection 
accuracy to above 95% when PRMSE is 100% (SNR equals zero) 
which demonstrated a very strong noise tolerant ability. Table 2 
contains numerical results selected at critical PRMSE values.

In the last step, we verify the performance of heartbeat 
classification based diagnosis taking R peak detection accuracy into 
consideration. Since R peak detection is the first step in ECG data 
analysis, it makes no sense to classify a heartbeat which could not 
be detected especially when ECG is corrupted by noise. Therefore, 
performance at this step is the overall performance of the entire 
system. Since we proposed our own ECG processing flow as a 
standard testing platform, we first examine the performance of this 
platform and compare its performance with other related work in 
terms of classification accuracy. Accuracy in this work is defined as 
the percentage of beats correctly classified according to annotated 
files divided by the total number of beats in the data. Table 3 provides 
a detailed comparison.

Overall, our proposed platform achieves 99.13%, 99.42%, 
98.26%, and 93.42% accuracy in classifying eight different types of 
beats tested on the ECG data containing 8118 beats from MIT-BIH 
Arrhythmia Database [24-27]. Feature extraction in the proposed 
platform reduces dimensionality to 6.5% of the raw data size. Thus, 
the computational complex of classification algorithms would 
reduce to 4.23% of that without feature extraction assuming O(n2) 
complexity of the classifier. Since noise also has a strong effect on 
classification accuracy, we also studied the influence of different noise 
and our de-noising strategy on the performance of classification. 
Four classifiers behave differently in terms of noise corrupted data 
due to their mathematical approach. This work does not intend to 
compare the performance of those classifiers. Instead, we focus on the 
noise tolerant ability and feature extraction and their enhancement 
to system performance. Figure 7 shows the result of the diagnostic 
accuracy. Each column represents one type of noise and each row 
represents one type of classifier. Each plot contains three accuracy 
curves on corrupted (green), de-noised (blue), and de-noised plus 
feature extracted (red) ECG data. The horizontal axis is the PRMSE 
from zero to one indicating the extent the ECG data is corrupted by 
noise and the vertical axis is the diagnostic accuracy. In general, the 
accuracy of de-noised ECG and feature extracted ECG perform better 
than corrupted ECG. Table 4 displays numerical values of accuracy 
using five types of noise for four classifiers selected from PRMSE 
values of 0%, 30%, 70% and 100%. For each classifier, three values 
represent the accuracy using corrupted, de-noised, and extracted 
features data, respectively [28-30].

Noise generally decreases slowly with classification accuracy as 
PRMSE increases as shown in Figure 7. Both de-noising and feature 
extraction improve the accuracy compared with corrupted data, 
especially when PRMSE is high. This indicates an enhancement of 
noise tolerance. In particular, when PRMSE is zero, feature extraction 
makes accuracy slightly lower than without extraction. Since we 
would like to achieve high dimensionality reduction, noise-invariant 
components for feature extraction was selected when PRMSE is 
one. Thus, at a low PRMSE level, part of the information will not 
be preserved which reduces accuracy. Feature extraction in most 
conditions slightly lowers the accuracy more than purely de-noising 
except for the Naive Bayes classifier which favors feature extraction 
[31-33].

Overall, neural networks and SVM behave similarly with noise 
tolerance in terms of accuracy. The Naive Bayes classifier and nearest 
neighbor classifier have weaker noise tolerance compared with other 
classifiers. As discussed in above section, Naive Bayes classifier assumes 
that each cluster is independent of all other clusters. However, adding 
the same kind of noise to all clusters may create dependency between 
different clusters. Therefore, equation (6) becomes inaccurate which 
results in low accuracy of the entire classifier. Since feature extraction 
only preserves coefficients unaffected by noise, features extracted 
data of each cluster is more independent than raw data. Thus, feature 
extracted data accuracy is higher than purely de-noised data for the 
Naive Bayes Classifier. Nearest neighbor classifies data by comparing 

Table 2: R peak detection accuracy.

PRMSE (%) SNR (dB) Instrument Noise (%) Baseline Wander (%) Motion Artifacts (%) Muscle Noise (%) Mixed Noise (%)

0% N/A 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8

50% 13.86 93.93 99.54 99.73 99.78 99.47 99.75 85.65 99.51 94.12 99.63

100% 0 78.53 96.86 98.26 99.7 96.82 99.63 25.39 95.98 83.26 98.07

R peak detection performance. First two columns: PRMSE and SNR (horizontal axis of Figure 6 bottom plot). R peak detection accuracy using equation (7) of each 
kind of noise is listed under corresponding noise name. For each noise name, left column is accuracy on corrupted ECG and right column is on de-noised ECG (bold).

Table 3: Comparison of heartbeat classification performance.

Comparable related works Top Accuracy #Types

Proposed flow using Neural Network 99.13% 8

Proposed flow using SVM 99.42% 8

Proposed flow using Naïve Bayes Classifier 98.39% 8

Proposed flow using Nearest Neighbor 95.57% 8

X. Dong, C. Wang, W. Si 97.78% 5

M. Thomas, M. K. Das, S. Ari 94.64% 5

A. F. Khalaf, M. I. Owis, I. A. Yassine 98.60% 5

S.-N. Yu, Y.-H. Chen 99.65% 6

S. Osowski, T. H. Linh 96.06% 7

I. Guler, E. D. Ubeyli 97.78% 5

M. Engin 98.00% 4

Y. H. Hu, S. Palreddy, W. J. Tompkins 92.20% 4

J. Kim, H. S. Shin, K, Shin, M. Lee 98.72% 6

J. J. Oresko, A. C. Cheng >90% 5

*Comparison of ECG automatic diagnosis accuracy performance comparison 
with literature reports.
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Figure 7: Performance of four classifiers on ECG data corrupted by five kinds of noise with PRMSE from 0 to 1 (10% increment intervals). Each plot represents 
one classifier accuracy under one type of noise with PRMSE from 0 to 1. Green is corrupted ECG data, blue is de-noised ECG data and red is de-noised plus 
feature extracted data.

Table 4: Selected heartbeat automatic diagnostic accuracy of four classifiers with different noise at different PRMSEs.

PRMSE Neural Network SVM Naïve Bayes Nearest Neighbor

  + * - + * - + * - + * -

Instrument Noise

0% 99.13 99.13 98.93 99.62 99.62 99.23 98.39 98.39 98.07 95.57 95.57 93.24

30% 94.39 97 96.19 85.26 96.03 95.94 33.2 89.26 94.03 90.84 93.31 91.18

70% 82.27 92.08 88.37 75.43 88.68 87.54 29.4 53.43 72.93 78.78 85.29 81.03

100% 64.87 85.58 81.8 61.62 81.73 80.73 25.33 35.02 55.31 66.24 76.46 71.35

Baseline Wander

30% 98.54 97.95 98.89 99.18 99.58 99.19 66.85 97.81 97.81 60.95 94.8 92.92

70% 94.68 92.87 98.79 97.33 99.58 99.1 35.37 96.69 96.69 38.2 91.92 92.21

100% 89.32 98.64 98.54 92.83 99.36 98.84 32.5 95.3 95.3 28.24 89.28 91.3

Motion Artifacts

30% 98.32 98.61 98.53 99.1 99.35 98.83 69.18 86.4 94.72 71.16 89.08 91.86

70% 92.07 98.17 98.11 94.75 98.54 98.28 41.57 74.92 90.27 45.15 84.25 89.28

100% 84.11 97.44 97.2 86.66 97.76 97.27 35.22 70.05 87.28 35.97 81.24 87.87

Muscle contraction noise

30% 92.31 97.06 95.81 83.44 95.8 95.52 30.61 88.42 93.85 89.32 93.55 91.14

70% 47.09 92.1 88 42.95 88.71 87.06 16.77 50.34 72.72 45.37 85.8 81.23

100% 21.1 85.95 80.65 19.99 81.78 79.77 8.19 35.29 55.52 20.21 76.43 70.76

Mixed noise

30% 95.43 97.54 96.83 86.54 99.62 99.23 98.39 98.39 98.07 95.57 95.57 93.24

70% 84.81 94.38 90.98 75.88 96.81 96.94 35.69 91.56 95.05 80.26 93.83 92.03

100% 71.11 89.38 85.19 65.86 91.68 89.94 29.46 64.36 78.92 46.95 87.25 84.63

Note: +Corrupted ECG, *De-Noised ECG, and -feature extraction in (%). *Selected diagnostic accuracy (%) of +corrupted, *de-noised, and –feature extracted ECG. In 
particular, when PRMSE is zeros, accuracy of each noise is the same.
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the number of samples of each cluster within a sphere centered at the 
input data. Ideal input data stays in the central area of the cluster and 
thus, the sphere would include mostly data sampled from the same 
cluster. The effect of noise on the input data results in a shift of data 
location. If noise deviation is evenly distributed to each dimension, 
corrupted input data has a better chance to stay closer to the original 
location in terms of Euclidean distance. However, when the noise 
is not evenly distributed to each dimension, the above assumption 
would not be valid and accuracy decrease quickly as more noise is 
added to data. Since instrument noise has random amplitude on each 
dimension, nearest neighbor algorithms show strong noise tolerant 
ability for instrument noise than other noise types.

Instrument noise shows a roughly linear decrease of accuracy 
for neural networks, SVM, and nearest neighbor methods. However, 
Naive Bayes classifier accuracy decreases very quickly from PRMSE 
equals 10% to 30% (accuracy changes from 98.39% to 33.2%) and 
accuracy maintains stable after PRMSE is greater than 30% (accuracy 
changes from 33.2% to 25.33%). In contrast, de-noising and feature 
extraction lead to a more stable decrease. Baseline wanders and 
motion artifacts have a small effect on the accuracy of neural network 
and SVM, but strong impact on Naive Bayes classifier and nearest 
neighbor. From Table 4, accuracy of neural networks and SVM 
remained around 90% maximal noise (PRMSE equals one) while 
Naive Bayer and nearest neighbor accuracy decreased quickly to 32% 
and 28%, respectively. Proposed de-noising and feature extraction 
bring accuracy back to around 95% for the Naive Bayes classifier and 
to 90% for nearest neighbor. Muscle noise created a sharp decrease 
of accuracy for four classifiers. As the performance metric takes R 
peak detection accuracy into account, the sharp accuracy decrease 
may due to the R peak detection accuracy as shown in Figure 6. Both 
de-noising and feature extraction greatly boost diagnosis accuracy. 
Mixed noise contains all four kinds of noise, leading to a decrease in 
accuracy for all four classifiers to 71.11%, 65.86%, 28.68%, and 34.85% 
respectively. The proposed de-noising and feature extraction improve 
diagnostic accuracy to above 85% for neural networks and SVM.

From our analytical methods, noise significantly degrades 
signal quality and creates a big challenge for ECG monitoring and 
automatic diagnosis systems since it reduces R peak detection 
accuracy and further decreases diagnosis accuracy. The proposed 
N-ICA based de-noising improves SNR, thus enhancing system noise 
tolerance. N-ICA based dimensionality reduces the data to only 6.5% 
of its original size which significantly reduces computation of the 
classifier. As SNR improved, R peak detection accuracy together with 
classification based automatic diagnosis accuracy is improved.

Conclusion
This paper proposes a novel approach to analyze noise and 

attenuate the negative effects of noise in order to enhance the 
performance of wearable sensor based data acquisition and automatic 
analysis systems. The proposed method was applied in data de-
noising and dimensionality reduction. To validate its effectiveness, 
we designed and implemented a four-step processing flow for a 
simulated ECG monitoring and automatic diagnosis system together 
with a noise generator. ECG data from the MIT-BIH Arrhythmia 
database containing 8118 heartbeats including normal beats and 
seven types of abnormal beats was used as testing ground truth data. 
Using ground truth data, the ECG monitoring system performance in 

terms of diagnosis accuracy outperformed most related methods and 
is able to classify more types of heart diseases. Experimental results 
using noise corrupted data demonstrated significant improvement of 
noise tolerance as measured using PRMSE and SNR as well as system 
performance improvement in both R peak detection and automatic 
diagnosis accuracy.
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Supplementary Information
The neural network is a fully connected network. The general 

architecture of the fully connected neural network consists of an input 
layer, output layer, and several hidden layers. The number of neurons 
in the input layers is determined by the size or dimensionality of the 
input feature vector. The number of neurons in the output layers 
is determined by the number of heartbeat types. Each neuron in a 
particular neural layer receives input from all neurons of the previous 
layer. These inputs are first weighted and summed. Then, an activation 
function determines the output. Equation (5) mathematically shows 
the calculation of a single neuron [34]:

						                 

(5)

Where wi,j is the weight connecting current neuron to the jth 
neuron in the previous layer, xj is the output of the jth neuron in the 
previous layer, bi is a bias of the current neuron, n is the number 
of neurons in the previous layer, and f(.) is the activation function. 
The learning process takes in a set of input data together with their 
corresponding labels and iteratively computes the weights and bias 
of the entire network via a back-propagation algorithm [35]. The goal 
of learning is to minimize the difference between neural network 
predictive output and the correct prediction result measured using a 
cost function. After the learning process, the network is able to make 
predictions given input data. Detailed information about neural 
networks can be found in [36].

Support Vector Machine (SVM) [37] training process calculates 
an optimal separating hyperplane [38] which stays between two 
different clusters of data that maximize the margin between two 
different groups of data. The classification process then determines 
to which cluster the current input data belongs using the hyper-
plane. A hyper-plane based classification of two groups of data can be 
mathematically represented as equations (6) and (7) [36].

						                 (6)

						                 (7)

Equation (6) is the hyper-plane with parameters w and b. Equation 
(7) is the classification process with Δ as the margin. To classify 
multiple classes, ‘one’ versus the ‘rest’ strategy is usually adopted. 
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Assuming there are N clusters, N hyper-plane (namely N classifiers) 
will be learned, each classifying one cluster versus the remaining N-1 
clusters. These classifiers produce a real-value instead of a binary 
value. The classifier with largest output is the final classification result. 
More details of SVM one-versus-rest strategy can be found in [39].

Naïve Bayes classifier calculates the posterior probability of each 
cluster ci given the current input x represented in equation (8):

			 

						                 (8)

						                  (9)

p(x) is evidence of data which is a constant, p(ci) is a prior 
probability of each ci among all clusters, and p(x|ci) is the conditional 
probability (likelihood) of data given cluster ci. The Naive Bayes 
classifier assumes that each feature is independent of other features. 
Thus, the conditional probability can be calculated as the product of 
each conditional probability of x given ci as shown in equation (8). 
Finally, the cluster with the highest probability, p(ci|x) will be selected 
as the classification result as shown in equation (9). More details can 
be found in [40].

Nearest Neighbor is a density estimation based classification 
algorithm. Assume there are K clusters. For each input data x, there 
could be a sphere of volume V centered at x. Within this sphere, 
there are Ni training samples belonging to the ith cluster. The 
estimated density of each cluster within the sphere centered at x can 
be represented as a probability p(ci|x) and the cluster with maximal 
density will be selected as the result as shown in equation (10).

  

						                (10) 
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