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Introduction
Etymologically, radiomics comes from the union of the terms radio- (radiation or radiology) 

and -omics, a common suffix used to form nouns relating to the study of the totality of a field 
(e.g. genomics, proteomics, metabolomics, transcriptomics). Thus, radiomics is the field that 
studies a large number of features computationally extracted from radiological images in order to 
discover hidden features of certain region(s). Radiomics is one of the newest areas in the field of 
clinical research in radiology; however, its use in other areas such as agriculture, mining, industrial 
inspection, security, and image retrieval, dates many years prior to its adoption in the field of 
medicine [1].

There has been an exponential increase in the use of radiomics concepts within publications 
in clinical research in recent years, mainly in areas of radiology where a large number of medical 
images distributed across different modalities are generated. The exponential increase in the number 
of publications on this topic per year, as listed in Science Direct (www.sciencedirect.com), PubMed 
(www.ncbi.nlm.nih.gov/pubmed/), Science (www.science.gov ), and Nature (www.nature.com), is 
shown in Figure 1.

One of the first studies in radiomics was reported in 2007 by Segal and coworkers, who 
performed a retrospective study investigating gene expression in liver cancer by analyzing images 
[2]. This pioneering publication had several limitations, among them the small number of subjects 
enrolled and the nascent techniques used to perform certain processes (e.g. its use of manual rather 
than automated segmentation).

Following that trailblazing publication, many other studies have been carried out based on the 
principles of radiomics as they apply to different clinical conditions, various patient populations, 
and using divergent non-invasive medical imaging modalities [3]. These applications were based 
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Abstract

Radiomics is an emerging area within clinical radiology research. It seeks to take full advantage of all the 
information contained in multiple medical imaging modalities. With a radiomics approach, medical images are 
not limited to providing only a qualitative assessment but can also provide quantitative data by parameterizing 
image features. These parameters can be used to identify regions and volumes of interest and discriminate 
normal healthy tissue from abnormal or diseased tissue. Radiomics is an interlinked sequence of processes of 
vital importance that begins with the acquisition and selection of medical images that involve standardization of 
acquisition protocols and inter-equipment normalization. This is followed by the identification and segmentation 
of regions or volumes of interest by expert radiologists through the use of computational tools that offer 
speed while reducing variability and bias. The segmentation process is the most critical stage in radiomics. 
This sometimes requires the incorporation of a pre-processing stage consisting of advanced techniques 
(reconstruction processes, filtering, etc.). Thereafter, representative characteristics of the region or volume of 
interest are extracted by approaches based on statistics, morphological features, and transform-based variables. 
Next, a statistical selection of the parameters that provide a high association and correlation with the clinical 
condition of interest is performed. Finally, processes such as data integration, standardization, classification, 
and mining processes can be applied as needed for particular applications. Ongoing research in radiomics aims 
to reduce the time and costs involved in interpreting medical images while simultaneously increasing the quality 
of diagnoses and monitoring of as well as the selection of treatment strategies. The results of many studies 
combining radiomics with standard medical techniques are highly encouraging, and these new approaches 
are increasingly used. This review article details the components of radiomics and discusses its applications, 
challenges, and future directions for this exciting new field of study.
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on multiple medical modalities that include Magnetic Resonance 
Imaging (MRI) [4], Computed Tomography (CT) [5], Ultrasound 
(US) [6], Nuclear Medicine Imaging such as Single-Photon Emission 
Computed Tomography (SPECT) [7], and Positron Emission 
Tomography (PET) [8].

The use of hybrid imaging (e.g. PET/CT) is quite common in 
modern medical practice, as practitioners seek complementary 
functional and anatomical information to facilitate more accurate 
diagnosis and treatment for each patient [9,10]. These modalities 
each create images with differing tissue contrast based on the organ 
being assessed and that organ’s properties and structure. In addition, 
specific particularities such as spatial resolution, signal to noise ratio, 
contrast-to-noise ratio, and reconstruction method, among others, 
are determinants relating to the quality of medical images acquired 
[11,12].

Images acquired by medical imaging provide precious details 
about the clinical condition of the patient. However, relevant 
information is often either not completely visualized or fully 
understood and appreciated by medical practitioners. Radiomics 
serves to bridge the gap between image acquisition and interpretation 
[3], and its wide applicability has gained numerous followers. At this 

time, workers in the field are primarily researchers who are using 
radiomics approaches to uncover relevant information hidden in 
medical images [13], in essence to data mine the images.

Numerous studies support the usefulness of radiomics in 
identifying and quantifying regions and volumes of interest associated 
with a variety of organs and pathologies [e.g.14-16]. This review article 
aims to address the characteristics, applications, and challenges of the 
emerging field of radiomics. In addition, its relationship with other 
technical approaches focused on its application to different organs, as 
well as future directions for the field, will be addressed. 

Components and Methods in Radiomics
The workflow of radiomics is a series of consecutive but 

interconnected steps, involving (a) the acquisition and selection of 
medical images; (b) identification and segmentation of a Region Of 
Interest (ROI) and/or Volume Of Interest (VOI); (c) extraction of 
descriptive texture features from the ROIs or VOIs; (d) statistical 
selection of the parameter(s) that provide the highest association 
with the clinical condition assessed; and (e) data integration, 
standardization, classification, and mining processes (Figure 2). 
While this is the general methodology, the different forms of 

241

131

48

1613

193

58

28
2

80

9 31
12

5410

50

100

150

200

250

300

2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 2 0 1 6 2 0 1 7 2 0 1 8

N
U

M
BE

R 
O

F 
PU

BL
IC

AT
IO

N
S

RESULTS BY YEAR

Science Direct Pubmed Science Nature

Figure 1: Number of publications, by year, containing the keyword radiomics in some of the most popular and important databases on life science and biomedical 
topics currently used in medical academic practice. Data were retrieved in February 2018.

Figure 2: Schematic of the general radiomics workflow: I. acquisition and selection of medical images; II. Contouring of region of interest (ROI) and/or volume of 
interest (VOI); III. Feature extraction; IV. Reduction and selection process for parameters with the best discriminant ability; and V. data integration, standardization, 
classification, and mining.
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implementation and approach to each step pose unique opportunities 
and challenges.

Image acquisition

Contemporary medicine relies on a set of information acquired 
from multiple sources, including written medical records as well 
as images and video acquired from multiple devices. Conventional 
medical imaging methods are used daily in health centers, and the 
huge amounts of data they provide are one of the most important 
sources of clinical information. They offer comprehensive support 
during diagnosis, monitoring, and response-assessment in the 
routine management of many diseases. However, all medical 
imaging modalities have inherent advantages and disadvantages, are 
differentiated in their capacity to offer anatomical or physiological 
information, and have diverse acquisition protocols and 
reconstruction parameters, matrix size, noise and artifacts, etc.

Image acquisition is the first step in the radiomics process. 
Depending on the study scope and the properties of the organ or 
disease under investigation, a specific modality, multiparametric 
sequences within a modality, or combination of modalities, may be 
most appropriate [9,17,18].

For example, CT is the Standard-Of-Care (SoC) for radiation 
therapy planning. Through this modality, a precise visualization of 
the geometric positions of tumor and normal tissue in a patient is 
feasible [19]; however, CT has well-known limitations. CT offers poor 
soft-tissue contrast, which poses a real challenge when identifying a 
target-irradiated volume. Functional and multiparametric MRI, 
however, offers excellent soft-tissue contrast, a major advantage 
when locating a target volume; thus, MRI and CT are frequently used 
together for radiation therapy planning [20,21]. 

If necessary, complementary information from another type of 
medical modality can also be incorporated.

However, the data integration from different modalities, obtained 
with divergent medical devices and various acquisition protocols, 
is not simple. The lack of acquisition protocol standardization and 
inter-equipment normalization should be taken into consideration 
when choosing appropriate methods to analyze the data [22,23]. 

Contouring and segmentation

Before the application of the contouring and segmentation 
process, some clinical studies incorporate an additional element of 
pre-processing. Pre-processing consists of a set of state-of-the-art 
techniques that have the function of improving the data quality of 
images obtained in the acquisition stage, from which characteristic 
parameters will be extracted in later stages. Advanced reconstruction 
techniques [24,25] that are executed on raw data and specialized 
filters [26-28] are part of the pre-processing stage. It should be noted 
that the nature of the filters must be consistent with the type of 
characteristic noise present in each medical imaging modality.

The identification and contouring of one or multiple ROIs or 
VOIs, depending on the study, is a crucial stage that precedes the 
extraction of their representative characteristics [29]. Segmentation 
processes allow obtaining a bidimensional ROI if contouring is 
performed in a simple slice, or a VOI if whole slices are used [30,31]. 
In radiomics, this process has commonly been performed manually, 
relying on the expertise and abilities of a specialist; however, manual 
contouring is not optimal, because it has the potential to introduce 
variability and bias [32]. It remains a valid option when a study has 
a small number of patients and if the professional responsible for the 
process has significant experience, but when the number of patients 
is sizable, manual contouring is no longer feasible or cost effective, 
even when a highly qualified professional performs the process. Semi-
automatic or automatic segmentation methods are more appropriate 
for large cohorts and have the advantage of reducing variability and 
bias [33].

Semi-automatic segmentation is an agile and reliable process that 
combines the advantages of automated and manual segmentation. In 
this form of computer-assisted segmentation, automatic contouring 
using an algorithm such as Thresholding [34], Snakes [35,36], Level 
Set [37], Fuzzy Connectedness [38-40], Clustering [41], or Region 
Growing [42], is followed by minor manual corrections applied by an 
experienced professional. 

Each of these methods has certain advantages and disadvantages, 
and the choice between them is mainly motivated by the application. 
Several of these techniques have proven to be robust and efficient 
in the segmentation of multiple medical images (distinct and/or 

Table 1:  Advantages and disadvantages of semi-automatic segmentation methods commonly used in medical applications.

Method Ref. Advantages Disadvantages

Thresholding 34 Simplest and faster segmentation approach. Useful to 
discriminate foreground from the background.

Accurate results are not obtained when there is no 
significant gray scale difference within the image. Sensitive 

to noise.

Snakes 35, 36 Simple to understand and easy to implement. Works well for 
images with good contrast between regions.

Less robust to noise than other methods. Not suitable for 
images whose limits are very smooth.

Level Set 37 Intrinsic, versatile and parameter-free. Works well on images 
with topological changes and curvature dependence.

Not works properly with complex topology images (poor 
topological adaptation). 

Requires heuristic splitting mechanisms and control point 
regridding mechanisms.

Fuzzy Connectedness 38-40

Easy to implement based on mathematical  
concepts. Fast, robust and works well in 3D segmentation. 

Requires only a seed to work. Nonlinear functions of arbitrary 
complexity can also be modeled.

Determination of fuzzy membership is not easy. Automatic 
calculation of the membership (dynamic weights) could 

cause excessive computational cost, time and/or memory.

Clustering 41 Eliminates noisy spots. Reduces false blobs. Allows 
definition of more homogeneous regions.

Computationally expensive. Senstive to normalization or 
standardization processes. Very sensitive to outliers.

Region Growing 42

Simple concept. Requires only a few seed points to work. 
Able to identify the connected regions with the same 

characteristics. Provides good limit information of the image 
as well.

Computational cost is considerable. Over-division and voids 
are caused when the image shows gray scale irregularity 

and excessive noise.
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combined modalities), especially when the images have non-uniform 
intensities [40,43]. Table 1 offers brief comparisons of the most 
important advantages and disadvantages of some popular and useful 
semi-automatic segmentation algorithms. 

Feature extraction

Automated extraction of a large number of quantitative features 
is possible through the application of different data characterization 
algorithms to medical images [44]. In general, this approach allows 
the quantification of morphological properties (shapes), locations, 
fractal dimensions and texture properties from specific ROIs or 
VOIs, which are then used for a variety of classification tasks, such as 
distinguishing normal from abnormal tissue (i.e. tumors).

The parameters used in radiomics applications are grouped into 
categories based on their statistical [45,46], morphological [47], and 
transform-based [48] features. Statistical features that describe the 
properties of an image within the spatial distribution of its gray levels 
through a variety of statistical parameters (Table 2). Normalization 
and standardization methods can be optionally used before the 
extraction of statistical features from images [49,50]. Several studies 
have described approaches to extract distinct first-order, second-
order, and higher-order statistics from images; some methods are 
outlined in Figure 3, and the parameters involved in each can be seen 
in Table 2.

First-order statistics are the simplest way of extracting statistical 
characteristics directly from the histogram of the medical image 
[51,52]. The main advantage of this approach is simplicity; it relies 
on the use of standard descriptors to characterize the data. However, 

Table 2:  Statistical features: Set of first-order statistical descriptors using information directly from the histogram; set of second-order statistical descriptors using Gray 
Level Co-Occurrence Matrix (GLCM); set of higher-order statistical descriptors using Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), 
Gray-Level Distance Zone Matrix (GLDZM), Neighborhood Gray Tone Difference Matrix (NGTDM), and Neighboring Gray-Level Dependence Matrix (NGLDM).

Statistic approach Ref. Matrix Name Parameters

First-order 51, 52 None mean, variance, standard deviation, skewness, kurtosis, energy, entropy, uniformity, coarseness, 
directionality, contrast, percentiles (1-%, 10-%, 50-%, 90-%, and 99-%), absolute gradient

Second-order 53-55
Gray-level co-

occurrence 
(GLCM)

autocorrelation, contrast or inertia, correlation, cluster prominence, cluster shade, cluster tendency, 
dissimilarity, angular second moment (energy or uniformity), entropy, inverse difference moment or 

homogeneity, inverse variance, maximum probability, sum of squares or variance, sum average, sum 
variance, sum entropy, difference variance, difference entropy, information measures of correlation, 

inverse difference-normalized, inverse difference moment-normalized

Higher-order

56-58 Gray-level run length 
(GLRLM)

short run emphasis, long run emphasis, gray-level non-uniformity, run length non-uniformity, run 
percentage, low gray-level run emphasis, high gray-level run emphasis, short run low gray-level 

emphasis, short run high gray-level emphasis, long run low gray level emphasis, long run high gray 
level emphasis, gray-level variance, run-length variance

59 Gray-level size zone 
(GLSZM)

nonuniformity, intensity nonuniformity normalized, size zone nonuniformity normalized, zone 
percentage, low intensity emphasis, high intensity emphasis, low intensity small area emphasis, high 
intensity small area emphasis, low intensity large area emphasis, high intensity large area emphasis, 

intensity variance, size zone variance, zone entropy

60
Gray-level distance 

zone 
(GLDZM)

distance zone nonuniformity, intensity nonuniformity normalized, distance zone nonuniformity 
normalized, zone percentage, low intensity emphasis, high intensity emphasis, low intensity small 
distance emphasis, high intensity small distance emphasis, low intensity large distance emphasis, 
high intensity large distance emphasis, intensity variance, distance zone variance, distance zone 

entropy

51 Neighborhood gray tone 
distance (NGTDM) coarseness, contrast, busyness, complexity, strength

61 Neighboring gray level 
dependence (NGLDM)

nonuniformity, dependence nonuniformity, gray-level nonuniformity normalized, dependence 
nonuniformity normalized, low gray-level emphasis, high gray-level emphasis, low gray-level small 

dependence emphasis, high gray-level small dependence emphasis, low gray-level large dependence 
emphasis, high gray-level large dependence emphasis, gray-level variance, dependence variance, 

dependence entropy, second moment

first-order statistics limits robustness in discriminating unique 
textures in certain applications, as this method does not consider the 
spatial relationship, interaction, and correlation of neighboring pixel 
values.

In addition to the features analyzed by first-order statistics, second-
order statistics calculates the particular relationship (probability) 
between two pixels that have similar gray levels [53-55]. The results of 
these operations are incorporated into a correspondence matrix, the 
Gray-Level Co-Occurrence Matrix (GLCM).This matrix is calculated 
for different distances and orientations.

Finally, higher-order statistics is based on a matrix such as the 
Gray-Level Run Length Matrix (GLRLM) that contains information 
about the number of runs with pixels of defined grey levels and run 
lengths in an image [56-58]. This matrix is calculated for different 
run orientations. An analogous approach is the Gray Level Size Zone 
Matrix (GLSZM) which quantifies regions of contiguous pixels in 
the image in a manner similar to GLRLM, except these regions are 
quantified along the abscissa as size zones rather than run lengths 
[59]. A size zone is generally defined as a collection of 9-connected 
pixels (2D) or 26-connected voxels (3D) of the same gray level. There 
are alternative methods to generate complementary matrices with 
their own parameters that belong to higher-order statistics: the Gray-
Level Distance Zone Matrix (GLDZM) [60], Neighborhood Gray-
Tone Difference Matrix (NGTDM) [51], and Neighboring Gray-
Level Dependence Matrix (NGLDM) [61].

Morphological features are independent of the gray-level 
intensity distribution in an image [47,62,63]. Thus, morphological 
features are calculated directly from the segmented medical image. 
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The main parameters of this group are the size and shape of the ROIs 
or VOIs. The morphological parameters are volume, surface area 
and surface area to volume ratio, sphericity, compactness, spherical 
disproportion, maximum 3D diameter, maximum 2D diameter 
(slice), maximum 2D diameter (column), maximum 2D diameter 
(row), major axis, minor axis, least axis, elongation, and flatness.

Transform-based features are calculated using approaches 
such as Fourier, Gabor and Wavelet transforms [48]. Since an 

image is constituted by intensity values in the spatial domain, in 
order to emphasize certain characteristics of the original image a 
transformation can be made to the frequency domain without losing 
any information. Fourier [64] and Gabor [65] transforms allow the 
simultaneous treatment of the spatial and frequency information 
of the image. Wavelet transforms allow a more detailed analysis of 
the image components, because it performs a filtering process of 
the noise contained in the images allowing a better appreciation of 
certain details [66].

Model-based features, such as fractal models, can be calculated 
using mathematical approaches [13]. Fractal analysis allows the 
quantification of self-symmetry through the assessment of repetitive 
patterns at different scales [48].

Feature reduction and selection

The reduction and selection of the representative parameters 
are the result of a statistical estimation process based on calculated 
radiomics parameters [67]. Binomial families, logit links, logistic 
and linear regression models are often used to reduce and select 
the radiomics parameters that provide the highest association for 
distinguishing selected ROIs or VOIs while shrinking irrelevant 
parameters [68]. Fisher scoring [69], Principal Components Analysis 
(PCA) [70], and Linear Discriminant Analysis (LDA) [71] are the 
standard operating procedures for variable selection from groups 
of variables in linear regression models. Another selection operator 
used for this purpose is the Least Absolute Shrinkage and Selection 
Operator (LASSO) with binomial families and logit links, which 
allows construction of a model specifically tailored to classify diverse 
ROIs or VOIs [72]. The LASSO procedure is typically performed in 
R using the glmnet package, while all other statistical procedures are 
executed using Stata software [73].

Each of these procedures for the reduction and selection of 
discriminant parameters has attendant advantages and disadvantages 
(Table 3). Some of these statistical tools are appropriate for certain 
situations where other methods may be inadequate, obtaining 
practical decisions, efficient control strategies and easy interpretation 
of the results. Many disadvantages of the procedures for reduction 
and selection of parameters can be overcome by using hybrid models 
(e.g. PCA+LASSO), making the reduction and selection processes 
more efficient and yielding more accurate results [74].

Table 3:  Advantages and disadvantages of procedures for the reduction and selection of representative features in medical studies with radiomics.

Procedure Ref. Advantages Disadvantages

Fisher scoring 69
Rapid and guaranteed convergence. Easy 

to interpret. Generates standard errors of all 
parameters estimates.

Computations become intensive in complex models. Difficult to 
determine the expected value of the Hessian matrix associated with the 

difficulty of identifying the appropriate sampling distribution.

Principal Component 
Analysis (PCA) 70

Unsupervised and simple technique. Nonparametric. 
Not computation-intensive. Does not require large 

amounts of data.

It is necessary to normalize the data before applying PCA to mitigate 
scale effects. Difficult to evaluate the covariance matrix accurately.

Linear Discriminant 
Analysis (LDA) 71

Easy and intuitive to use and understand. Maximizes 
the separation between classes while minimizing 

dispersion within the class.

Only models relationships between linear dependent and independent 
variables. Very sensitive to the anomalies in the data.

Least Absolute 
Shrinkage  

and Selection Operator 
(LASSO)

72 Reduces and selects variables simultaneously for 
better prediction and model interpretation.

Tends to select more covariates than expected, promoting a conflict 
between the correct selection and the optimal prediction.

Figure 3: Radiomics features are distributed in different techniques 
focused primarily on statistical approaches: (a) first-order, (b) second-order 
and, (c) higher-order statistics. In addition, other methods focused on (d) 
morphological and (e) transform-based features, are used for extracting 
information from medical images.
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Data Integration, Classification, and the Data Mining 
Process

The data integration, classification, and mining process make use 
of the parameters that have been determined to best represent the 
object of study (e.g. tumor). These valuable data can be analyzed in a 
variety of ways and for different purposes. Figure 4 shows an example 
of this process.

Recently, a group of computational techniques intended to 
perform decision-making and related tasks in a manner similar 
to human intelligence, have become important in many areas of 
research and development [75]. Medical imaging research has not 
been an exception, and advanced algorithms have been applied to 
automatically classify imaged tissue as healthy or abnormal [76].

Well-known techniques such as clustering [77], decision tree 
[78], deep learning [79], machine learning [80], and data mining 
[81], among others, are ideal for radiomics assessment. There is no 
one perfect combination of techniques, since the use of each of these 
approaches is related to the details of the application [82]. All these 
techniques are in constant and committed expansion, contributing 
with their advantages, strengths, and robustness not only in processes 
of detection and discrimination of particular tissues [78,80] but 
also in procedures of automatic segmentation [79], as well as other 
procedures that affect medical applications. The growth of these high-
level automated approaches has allowed precision medicine to also be 
highly personalized medicine. 

Discussion and Summary
New advances in scanners, better reconstruction methods, and 

filtering algorithms, among other advances, have improved the quality 
and resolution of medical images. Thus, functional and anatomical 
information from medical imaging modalities offer specialists clear 
advantages in making the correct clinical diagnosis in patients with 
complicated pathologies.

Although the human visual system is quite efficient, it has clear 
limitations. When a person executes an image assessment, the human 
eye can discriminate only a dozen different intensities [83]. Thus, 
there are certain limits and a level of information loss for even the 
most qualified professional. These limitations play a role against 
when a qualitative diagnosis is performed by directly observing 
the medical image, as well as when a manual contouring process is 
executed. It has been established that the contouring process is the 
most critical and relevant component for the success of a radiomics 
approach; contouring and segmentation form the basis for all analysis 
of radiomics parameters [29]. Some studies show that 3D radiomics 
features have higher performance than 2D [84,85]; this is due to the 
higher information density. The process of extracting radiomics 
features is not limited to the information contained in the ROI (a 
single slice) but includes information contained in the entire VOI (a 
set of slices) [86].

Radiomics features, computer-extracted textures, offer a novel 
approach to medical image analysis. They have played an important 

Figure 4:  Heat map that includes the process of data integration and clustering generated in a study conducted by Alerts H. and coworkers, entitled “Decoding 
tumor phenotype by noninvasive imaging using a quantitative radiomics approach” [94]. It is possible to identify some elements in the image such as: (a) direct 
association between the patients enrolled and the radiomics feature expressions (indicating similarity through a scale of scores), (b) clinical parameters of the 
patients associated with the different radiomics feature expressions and, (c) classification of patients according to different stages of the assessed disease.
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role in several medical applications, offering important support in the 
organization, diagnosis, and characterization of lesions and a variety 
of tumor types [13,82]. A number of studies focused on different 
diseases associated with important organs have been published in 
prestigious radiology and oncology journals. Several studies using 
radiomics approach have examined organs including the liver 
[2,87,88], brain [89-91], breast [92-94], heart [48], lung [95-98], 
kidney [99,100], rectum [101,102], and prostate [103-106].

Radiomics uses several well-known concepts and approaches 
including analysis of statistical, morphological, and transform-based 
features. Several hundred parameters can be extracted from each 
ROI or VOI in a few seconds using these methods. The application of 
advanced algorithms of identification, selection, and reduction of the 
representative radiomics features that provide the highest association 
for distinguishing selected ROIs or VOIs while shrinking irrelevant 
parameters is essential. Individual approaches can work well, and the 
use of combined or hybrid models is increasingly common.

The diversity of image types, acquisition procedures, and methods 
of reconstruction, among other protocols, are just a few examples of 
the substantial number of details with which each research group 
in radiomics must contend. This suggests standardization should 
be sought in order that the investigations may be oriented towards 
a common horizon. A proposed solution to this problem is the 
generation of common databases with free access, with different 
modalities of medical images and organs of interest [44]. Data 
validation and standardization will allow research laboratories to 
compare their proposals and results, enabling radiomics to realize its 
true potential as a support system for clinical diagnosis and treatment. 

Conclusion and Future Outlook
Radiomics is a relatively new discipline, currently in the midst 

of simultaneous expansion and standardization. This process will 
require a series of new studies to give radiomics technical and clinical 
validation.

The strength, versatility, and applicability of radiomics as an 
approach to the extraction and representation of medical ROI or VOI 
through selected parameters has been amply demonstrated in the 
clinical and academic fields. Radiomics is a non-invasive diagnostic 
tool used to complement existing methods of evaluating the 
characteristics and behavior of the disease. In addition, this valuable 
tool can help improve the diagnosis, surveillance and/or prognosis of 
multiple diseases.

In the future, achieving further consensus from the research 
community is expected to plan and develop protocols to achieve 
standardization and characterization for all medical imaging 
modalities, scanner manufacture, image acquisition procedures, 
reconstruction, pre-processing, contouring, robust extraction of 
informative features, feature analysis and classification, and data 
mining.
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