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 Introduction
Tumor volume is a significant prognostic factor in the treatment of malignant tumors. 

Treatment protocols for malignant brain tumors generally call for removal through surgical 
procedures followed by irradiation of the tumor bed. The goal of radiation therapy is to irradiate 
the tumor volume while limiting damage to the surrounding normal tissues. Achieving this goal 
requires accurate determination of 3-D treatment volumes.

Tumor volume is a significant prognostic factor in the treatment of malignant tumors [1]. Even 
though CT is the standard procedure applied in patients with intracranial tumors due to its high 
acquisition speed, low cost, and low sensitivity to patient motion during examination, this modality 
has clear limitations due to its use of ionizing radiation and the limited reduced range of soft tissue 
contrast in the resulting images. The reduced soft tissue contrast within CT images may affect the 
identification of lesions in the brain and means such images are not appropriate to use for definitive 
diagnosis. Contemporaneously, the capabilities of the MRI modality have been gaining prominence, 
being able to obtain images with superior quality and allowing better access to the intracranial 
structures [1].

Of all tumor types, Glioblastoma Multiforme (GBM) and meningioma represent two of the 
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Abstract

Purpose: Treatment protocols for malignant tumors generally call for surgical removal followed by tumor-bed 
irradiation. Irradiation ideally affects the tumor volume while limiting damage to surrounding normal tissues; this 
requires accurate determination of 3-D treatment volumes. Glioblastoma multiforme (GBM) and meningioma are 
common primary intracranial tumors. Edema surrounding meningioma is vasogenic, while edema surrounding 
GBM may also have tumor cell infiltration, difficult to differentiate by Fluid-Attenuated Inversion Recovery 
(FLAIR). Hypothetically, the FLAIR signals of edema and GBM should differ. We used T2W-FLAIR spin-echo to 
determine edema type and differentiate tumors through their textural properties. 

Methods: Enrollment was 20 patients with GBM and 10 with meningioma. Patients were scanned using a 
3-D multiecho GRE sequence, measuring the FLAIR signal of edema around the tumor. Segmentation identified 
two regions of interest (ROI, edema and tumor); texture analysis was applied to each ROI with- and without 
normalization. LASSO analysis of texture parameters selected the best parameters for separating ROIs; using 
them, we performed a Receiver Operating Characteristic (ROC) analysis. 

Results: Two intracranial tumor types with- and without normalization provided four scenarios per ROI. 
First-order statistics using 1%-percentile feature was chosen in all scenarios and had the best discriminant 
ability for meningioma. Second-order statistics using correlation features was also selected across scenarios, 
although angle and magnitude varied. Higher-order statistics using short-run emphasis features and gray level 
non-uniformity provided the best discrimination for GBM images with- and without normalization, respectively. 
ROC curves display the results of both the single best discriminator and the discriminant ability of the model 
using all features selected by LASSO. All univariate models had good discriminant ability (AUC>0.83), and all 
multivariate models had excellent discriminant ability (AUC>0.92). 

Conclusion: A small subset of texture parameters shows excellent ability to discriminate edema from tumor 
tissue through its most discriminating features.
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most common primary intracranial tumors with a high incidence 
of clinical occurrence in adult patients [2,3]. It is known that the 
edema surrounding GBM contains both vasogenic and tumor cell 
infiltration, while the edema surrounding meningioma is a vasogenic 
type without tumor cell infiltration [4]. A comparison of images of 
vasogenic and infiltrative edema in patients with GBM, and vasogenic 
edema in patients with meningioma using Fluid-Attenuated 
Inversion Recovery (FLAIR) MRI images, may help to differentiate 
FLAIR signal changes between these two types of edema [5,6]. 

Once a brain tumor has been identified, there are several 
procedures for clinical treatment; the choice depends on the size and 
location of the tumor in the brain, the type of tissue involved, whether 
the tumor is benign or malignant, and its growth rate, among other 
factors [7,8]. Treatment options include surgery, chemotherapy and 
radiation therapy, or a combination of these. Surgical resection (if not 
deemed too dangerous) is usually the first treatment action to reduce 
pressure on the brain [9-13].

In recent years, new techniques have been developed for 
administering radiation to brain tumors while protecting nearby 
healthy tissues, avoiding and/or limiting the side effects that damage 
healthy tissues close to the tumor. Cells located in the region where 
treatment is received are injured or destroyed by radiation therapy, 
damaging their genetic material and slowing down their growth and 
constant division. It is not news that the effect of radiation damages 
both cancer cells and normal cells. However, many normal cells 
recover from the effects of radiation and regain proper function 
[13,14].

There are different techniques to identify the region where tumor 
cells are located within the brain. An emerging field of research 
achieving auspicious results is texture analysis. Texture analysis serves 
as a descriptor of pattern characteristics and identifier of various 
types of anatomical and pathological structures with applications in 
a wide variety of radiological topics across different medical imaging 
modalities including MRI [15-18]. 

Hypothetically, in MR imaging, the FLAIR signal of vasogenic/
infiltrative edema differs uniquely in each patient with GBM. This 
study used T2W-FLAIR spin-echo MRI to differentiate between types 
of edema (vasogenic or tumor cell infiltrative) and extent of brain 
tumors in order to distinguish them through their textural properties. 
The results of this research may have potential applications, both as a 
staging procedure and a method of evaluating tumor response during 
treatment. 

Materials and Methods
This study used a structure conformed by a set of consecutively 

interconnected stages: (a) selection of 3-D brain MRI patients 
diagnosed with intracranial tumor, (b) segmentation process of two 
regions of interest (ROI-1: edema and ROI-2: tumor), (c) extraction 
of texture features from the ROIs with different approaches (first-, 
second-, and higher-order statistics) and (d) statistical selection of 
the parameters providing the highest association for distinguishing 
tumors from edema. Figure 1 shows the sequence of modules used 
in this study. 

Study population

Institutional Review Board (IRB) approval was obtained to access 
electronic medical records to identify and recruit thirty patients who 
underwent a brain MRI routine procedure from among hundreds 
of patients with similar clinical conditions. Of all patients, twenty 
patients had GBM (66 ± 8 years old, 12 females and 8 males) and ten 
patients had meningioma (64 ± 7 years old, 6 females and 4 males). 
All patients were selected by an experienced neuroradiologist with 
> 6 years of clinical experience. The inclusion criteria consisted of 
patients over 18 years of age who had an MRI between 2011 and 
2016 with gliomas of various grades (based on WHO histological 
principles [19]), or a pre-operative MRI leading to a diagnosis of 
GBM or meningioma. Patients who received a pre-operative biopsy, 
corticosteroids at the time of the pre-operative MRI scan, and those 
with MRI images with severe artifacts, were excluded.

MR imaging acquisition

All thirty patients were scanned on a 3T scanner (SIEMENS, 
Skyra, USA) with a 16-channel RF head coil using T1-weighted 
contrast-enhanced fast-spoiled gradient-recalled acquisition with the 
following acquisition parameters: TR = 900 ms, TE = 8 ms, matrix 
size = 256 x 256, slice thickness = 4 mm, pixel bandwidth = 244.141 
Hz. A T2-weighted FLAIR protocol was also used, with the following 
acquisition parameters: TR = 9002 ms, TE = 127.6 ms, TI = 880 ms, 
matrix size = 256 x 256, slice thickness = 5 mm, pixel bandwidth = 
122.109 Hz. MRI scans were acquired prior to radiation treatment.

Image processing

Image processing represents the most demanding component of 
this study, since the relevant information used for analysis is extracted 
from the MR images. The main advantage of this mechanism is the 
use of non-invasive methods applied to the medical images assessed. 

Figure 1: Flow chart with the sequence of modules used in this study: (a) T2W-FLAIR sequence of patients diagnosed with intracranial tumor, (b) contouring 
process of tumor and edema, (c) texture features extraction and, (d) statistical reduction and selection of the parameters with the best discriminant ability for 
distinguishing tumors from edema.
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All image-processing steps were performed using in-house 
algorithms created in MatLab® version 2016a [20]. All images and 
data processing sequences used in this study allow the analysis of two-
dimensional (2D) structures. Each sequence is detailed below. 

Segmentation process: The segmentation process of medical images 
is considered one of the most complicated tasks in image processing. 
Segmentation allows subdividing an image or volume into regions or 
objects that compose it [18].

In this preliminary study the FLAIR signal of edema surrounding 
GBM, or meningioma was measured. The segmentation process 
was conducted manually by an experienced neuroradiologist with 
>6 years of clinical experience using a semiautomatic algorithm, 
identifying two regions of interest (ROI-1: edema and ROI-2: tumor) 
in all patients assessed as shown in Figure 2. 

An expert neuroradiologist reviewed all FLAIR images and 
chose slices with generous and clear representation of the ROIs for 
segmentation. The choice of slices offered as much as information as 
possible from each region edema and tumor. The neuroradiologist 
used pre-determined colors to contour the tumor (green) and edema 
(red) regions in images for each member of the full cohort. Once 
manual contouring was completed, our algorithm generated a file 
with segmented regions; these files were used in the next step of the 
study.

Texture descriptors: Texture analysis is a technique widely used in 
several areas of modern medicine [17]. It uses the spatial variation 
of pixel intensities or patterns for different purposes including 
classification of different regions within the image, segmentation, 
characterization, and synthesis [16,18,21-24].

We have explored different texture analysis techniques focused 
primarily on statistical approaches with which about 300 diverse 
features of each segmented ROI (edema and tumor) were extracted. 
The texture features used in this study are distributed between three 
different techniques: first-, second- and higher-order statistics as 
explained below. All features formulas discussed herein are provided 
as supplementary information. 

First-Order Statistics (FOS) represent the simplest way to 

calculate statistical features from the grey-level intensity histogram 
values of all pixels within an image, ranging from 0 to 2^ b-1, where 
b symbolizes the number of bits in the image ( Figure 3a) [17]. This 
method measures standard descriptors to characterize the data. 
The histogram-based parameters calculated were mean, variance, 
SD, skewness, kurtosis, energy, entropy, contrast, coarseness and 
percentiles (1%, 10%, 50%, 90%, and 99%). However, the simplicity of 
this approach limits its robustness in discriminating unique textures 
in certain applications, as this method does not consider the spatial 
relationship, interaction and correlation of neighboring pixel values 
[25-27]. 

Second-Order Statistics (SOS) describes the properties of pairs 
of pixel grey level values which occur in an ROI or image. This 
method uses the Grey Level Co-Occurrence Matrix (GLCM) which 
describes the relationships of pixel pairs considering different angles 
of orientation (θ = 0°, 45°, 90°, 135°) and separation between the 
reference and neighbor pixels [15,16,21]. The axes of GLCM are 
defined by the grey levels present in the image; these depend on the 
number of bits within the image (e.g. an 8-bit image will be displayed 
by 2^8 = 256 different grey levels). Based on the symmetry property, 
the GLCM transpose was calculated in order to include the results 
of the complementary orientations (θ = 180°, 225°, 270°, 315°) for 
its computation with the results of previously calculated orientations. 
Consequently, the symmetric matrix resulting from the sum of the 
regular and transposed GLCMs was used by convention. In brief, this 
technique allows the extraction of statistical information from an ROI 
or image from the distribution of pairs of pixels through the GLCM, 
as shown in Figure 3b [17,28,29]. 

Higher-order statistics (HOS) measure information on the run of a 
particular grey level of  linearly adjacent pixels in particular directions 
for detecting non-linearities. A run is defined as a consecutive string 
of pixels with the same pixel intensity. Although HOS is an approach 
similar to SOS, certain applications have shown certain advantages 
of HOS mainly when analyzing images that present some kind of 
distortion due to effect of attenuation [30]. This method uses the 
Grey-Level Run Length Matrix (GLRLM) to represent information 
about the number of runs with pixels of defined grey-levels and run 
lengths in an image (Figure 3c). The number of pixels contained 
within the run is the run length [15,21,30-32]. For this study, we have 
incorporated the GLRLM for different run angles (θ = 0°, 45°, 90°, 
135°). 

Normalization Process: In image processing, it is quite common to 
apply normalization in order to modify the range of intensity values 
of the pixels which are part of the image or ROI being evaluated. Our 
study has provided calculation of the texture features through the 
different approaches indicated in the texture descriptors section from 
two perspectives: the first used ROIs without normalization (native 
images) and the other considered the same ROIs after a normalization 
process. A cumulative normalization method, 1% - 99%, was used 
in this study, a method often used in texture analysis [33,34]. This 
normalization process compresses the grayscale range of the image 
by considering the brightness level at which the cumulative histogram 
of image equals 1% of its total at the level where the cumulative 
histogram equals 99% of its total. The normalization processes are 
typically different for different images; different ROIs generally yield 
different 1%- 99% levels.

Figure 2: The segmentation process was conducted by an expert 
neuroradiologist through a semiautomatic algorithm, whereby two regions 
of interest (ROI-1: edema, red and ROI-2: tumor, green) were identified in 
patients diagnosed with (a) meningioma and (b) glioblastoma multiforme 
tumors.
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Statistical analysis

As previously mentioned, all texture analysis methods applied 
in this study are statistical in nature. Those methods were computed 
for a population of specific ROIs and normalizations: edema and 
intracranial tumor, with- and without normalization. In this regard, 
the reduction and selection process were the result of a process 
of statistical estimation of a large database formed by all texture 
parameters antecedently calculated [35]. 

The least absolute selection and shrinkage operator (LASSO) is 
a variable selection method for linear regression models used in this 
study. The LASSO with binomial families and log it links was used to 
reduce and select the parameters that provide the highest association 
for distinguishing tumors from edema while shrinking irrelevant 
parameters. The LASSO performed a restriction process of all texture 
features through the absolute values of the parameters of the model. 
Those features whose regression coefficients are close to zero were 
eliminated. On the other hand, features with a strong association 
with the target variable of the corresponding model were selected. 
The selected features attempted to minimize the prediction error in 
the reduction and/or selection process to satisfy specific criteria of 
the process [36].

The standard operating procedure for feature selection in a 
texture analysis usually involves Principal Components Analysis 
(PCA) or Fisher scoring [37,38]. While both are valid methods for 
identifying clustering amongst parameters, they are agnostic to the 
target variable (edema versus tumor, in our case). Conversely, LASSO 
allows us to construct a model specifically tailored to classify tumor 
versus edema. 

Finally, using the features selected from LASSO, the Receiver 
Operating Characteristic (ROC) analysis was performed and all 
relevant plots were constructed. The LASSO procedure was performed 
in R using the glmnet package; all other statistical procedures were 
performed using Stata v14.1 [39].

Results

Two-dimensional ROIs located in the edema and tumor was used 
for feature extraction for all patients with meningioma and GBM. 
After completing the sequence of processes described in the Materials 
and Methods section, a group of features selected through the LASSO 
procedure was obtained for patients with meningioma and GBM, 
both with- and without normalization. The selected parameters are 
listed in Table 1.

Figure 3: Texture analysis used in this study was distributed in different approaches: (a) First-order statistics based on the histogram distribution of the grey 
values, (b) Second-order statistics though the Gray-Level Co-Occurrence Matrix (GLCM), and (c) Higher-order statistics though the Gray-Level Run-Length Matrix 
(GLRLM).
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First-order statistics using 1% percentile feature was the only 
parameter chosen by LASSO in all four scenarios, and was the 
variable with the best discriminant ability for meningioma, with- 
and without normalization. Second-order statistics using correlation 
feature was also selected across scenarios, although the angle and 
the magnitude varied. For GBM, Higher-order statistics using gray 
level non-uniformity and short run emphasis features provided the 
best discrimination for images without and with normalization, 
respectively. 

Although there was repetition of certain texture features in the 
different scenarios chosen as part of the LASSO selection process, 
these parameters do not have direct significance as the features 
with better discriminant capacity in all cases. In addition, other 
differentiated parameters with different distance values and/or angles 
were selected at the same time in some scenarios.

Figure 4 displays ROC results with both the single best 
discriminator (1% percentile for meningioma cases, gray-level 
non-uniformity 90° and short run emphasis 90° for GBM cases 
without normalization and with normalization, respectively) and 
the discriminant ability of the model using all parameters selected 
by LASSO. All univariate models had good discriminant ability 
(AUC>0.83), and all multivariate models had excellent discriminant 
ability (AUC>0.92).

Through the parameters with the best discriminant ability 
stratified by tissue that were listed in Table 1, the edema of the tumor 

tissue was clearly distinguished. Edema is represented by filled circles 
and intracranial tumor by open circles on FLAIR images for patients 
with meningioma and GBM. The dissociation between the two 
regions of interest (edema and tumor) is clear in all subjects and for 
all studied pathologies as shown in Figure 5.

Table 1:  Set of variables selected by LASSO procedure, including the feature with the best discriminant ability to differentiate edema from tumor tissue for different 
tumoral diseases and scenarios.

Brain Tumor Type of Image Variable with Best Discriminant Ability All Variables selected by LASSO

Meningioma

Without normalization First-Order Statistic 
 1% Percentile

First-Order Statistic: 1% Percentile

Second-Order Statistics: Correlation, 90°,  d = 4

Second-Order Statistics: Correlation, 90°, d = 5

Second-Order Statistics: Sum Average, 45°, d = 5

With normalization First-Order Statistic  
1% Percentile

First-Order Statistic: 1% Percentile

Second-Order Statistics: Correlation, 90°, d = 4

Second-Order Statistics: Difference Variance, 90°, d = 4

Glioblastoma 
multiforme

Without normalization Higher-Order Statistics  
Gray-Level Non-Uniformity, 90°

Higher-Order Statistic: Gray-Level Non-Uniformity, 90°

First-Order Statistic: 1% Percentile

Second-Order Statistics: Correlation, 0°, d = 3

Second-Order Statistics: Correlation, 45°, d = 4

Second-Order Statistics: Energy (ASM), 0°, d = 5

First-Order Statistic: Skewness

Second-Order Statistics: Sum Average, 45°, d = 5

With normalization Higher-Order Statistics  
Short Run Emphasis, 90°

Higher-Order Statistic: Short Run Emphasis, 90°

First-Order Statistic: 1% Percentile

Second-Order Statistics: Sum Entropy, 0°, d = 5

Second-Order Statistics: Sum Entropy, 0°, d = 4

Second-Order Statistics: Correlation, 90°, d = 4

Second-Order Statistics: Sum Average, 45°, d = 3

Area (cm²)

Figure 4:  ROC curves showcasing both the single best discriminator (solid 
green lines) and the discriminant ability of the model using all variables 
selected by LASSO (dash orange lines).
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to establish the histological diagnosis to increase the chances of 
treatment success.

Technological innovations are continuous and offer an important 
dimension in the treatment strategy for patients with brain tumors. 
Coadjuvant treatments are a radiation therapy shown to be effective 
in most malignant brain tumors, making their use unquestionable 
[7,8,11-14]; however, the success of this treatment depends directly 
on accuracy in estimating the size and location of the brain tumor 
[9-11]. 

In this scenario, texture analysis is capable of offering 
complementary information used by radiologists for the purposes 
of organization, diagnosis, and characterization of lesions or tumors 
within the brain. Texture analysis is widely applied in several areas of 
modern medicine considering different medical modalities, diverse 
organs and diseases [38]. We have used well-known concepts and 
different approaches (first-, second-, and higher-order statistics) for 
this purpose. In this study, extraction of the texture parameters was 
preceded by a semi-automatic and two-dimensional segmentation 
process of specific ROIs (edema and tumor). Future studies will 
improve some procedures, including the segmentation process, 
in order to extract much more information through the calculated 
texture parameters over 3D objects.

Based on a small number of texture parameters, the tumor 
regions in the brain were segregated, and the differentiation of 
the edema and the tumor tissue was established. In this study, the 
major innovation was the use of a different tool for the selection of 
the representative parameters that provide the highest association 
for distinguishing tumors from edema while shrinking irrelevant 
parameters. The most popular linear procedures used to reduce 
and select discriminant features are Principal Component Analysis 
(PCA) and Linear Discriminant Analysis (LDA) [40]; however, this 
study used a different selection operator, LASSO, which was applied 
to linear and nonlinear systems with encouraging results. Different 
procedures for the reduction and selection of discriminant parameters 
(i.e. PCA, LDA, LASSO, and so on) have attendant advantages and 
disadvantages. Nowadays, many disadvantages of the procedures 
for reduction and selection of parameters can be overcome by using 
hybrid models (i.e. PCA+LASSO) as they generate better selection 
processes.

In clinical terms, GBM is generally considered a solitary tumor 
(commonly located in both frontal lobes) while meningioma is not 
[41]. Of course, this is not a univocal rule; however, each type of 
tumor has a distinctive biologic nature. On this basis, our results 
suggest morphological differentiation between the two different 
brain pathologies evaluated (meningioma and GBM), taking into 
consideration different ROI locations, sizes, and shapes.

In addition, we can take advantage of multiparametric quantitative 
MRI imaging for better tumor and edema classification. These 
methods including, for instance, diffusion tensor imaging (DTI) and 
all of its quantitative derivatives, such as Fractional Anisotropy (FA), 
Medium Diffusivity (MD), Linear Coefficient (CL), Flat Coefficient 
(CP) and Spherical Coefficient (CS) imaging [42]. Some encouraging 
results have also been reported from the combination of Arterial 
Spin Labeling (ASL) perfusion and Diffusion Tensor Imaging (DTI) 
metrics of the enhanced lesion and related edema in the process of 
identifying recurrent/residual gliomas [43].

Figure 5: Sorted values for the best discriminator stratified by tissue: Edema 
(filled circles) and Brain tumor (open circles) on T2-FLAIR MR images for (a) 
Meningioma with and without normalization, (b) GBM without normalization 
and, (c) GBM with normalization.

Discussion
Brain tumors include a variety of complex particularities 

based on genetic-hereditary factors, radiation exposure, severe 
encephalocranial trauma, immunosuppression, hormonal factors, 
environmental factors (infections), and so on [1-3,6,7]. Despite its 
anatomopathological diversity, it is vital to have a reliable procedure 
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Conclusion and Future Work
According to the values of the descriptors selected by LASSO 

(Table 1) and based on their theoretical definitions, this study showed 
that meningioma images generally exhibit more similarity and linear 
dependence between the intensity values of their elements than 
images of GBM. That statement should be taken with caution since 
it only refers to the cases analyzed in this study and cannot be taken 
as a general condition. Further studies need to be performed with a 
greater number of subjects to examine this relationship. In addition, 
the analysis of more patients will allow having a much clearer position 
regarding the levels of infiltration in tumors such as meningioma and 
GBM.

Our FLAIR-based method has potential to be used as a beneficial 
and noninvasive alternative for differentiation and/or classification 
of these tumor types through specific descriptors. Small subsets of 
texture descriptors show excellent ability to discriminate edema from 
tumor tissue. 

Future studies will evaluate different MRI sequences such as 
diffusion-weighted and ADC images with some transformations 
techniques applied to input images. In addition, texture exploration 
could be improved by extending that technique from 2-D to 3-D 
analysis.
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