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Background
To date, the term “oncolytic virus” has been defined by a panel of experts as a non-pathogenic 

virus that specifically infects cancer cells and causes their destruction [1]. As oncolytic viruses are 
endowed with intrinsic anticancer activity, they are generally viewed as passive immunotherapeutics, 
which target the immune evasion of the malignancies and enhance antitumor immune surveillance.

The cytopathic effects exhibited by viruses after infecting cancer cells have led to their use in 
virotherapy. More than a century ago, it was observed that tumors spontaneously regressed in 
patients who had a viral infection, and this led to clinical trials that used bodily fluids containing 
human or animal viruses to treat cancer patients [2].

Since the discovery that some viruses are toxic and thus therapeutic to cancers, oncolytic viruses 
have evolved to recombinant viral strains with more specific killing potential to malignant cells, 
and they subsequently entered clinical trials. The recent developments have been highlighted on 
generation of conditional replication of the viruses in tumor, termed conditionally replicative 
adenoviruses (CRAd) [3,4], expression of transgenes with therapeutic effects, and targeting and 
delivery of oncolytic viruses. 

As a human virus that exhibits tropism to virtually cells of all histologic origins, adenoviruses are 
used for gene transfer in the laboatories and disease therapy. The viruses have also been applied in 
anticancer biotherapy after being engineered to selectively replicate in the cancer cells after mutations 
and deletions of certain parts of the viral genome and/or by inserting target gene fragments into it 
to create armed adenoviruses. Oncolytic adenoviruses (OA) are genetically manipulated human 
adenoviruses (HAdVs) that have acquired a phenotype that enables them to infect and/or selectively 
replicate in tumor cells but are more restricted in normal cells [5]. 

Data show that manipulated adenoviruses kill cancer-derived cell lines but do not affect normal 
control cells, which are usually the immortalized cells of the same histologic origin [2]. To correct 
the genetic deficiency in malignancies, cDNA fragments that code for immunoregulators or pro-
apoptotic cytokines, such as melanoma differentiation-associated gene-7( MDA-7)/IL-24 [3,4], 
tumor necrosis factor related apoptosis inducing ligand (TRAIL) [5], and tumor suppressor gene 
(TSG) cDNAs [6,7,8] or siRNA to silence anti-apoptotic genes, like survivin [9-11] have been 
incorporated into recombinant adenoviruses.

The adenoviral vectors expressing a tumor suppressor or cytotoxic/suicide proteins induce cell 
cycle arrest or a death cascade. We have constructed a recombinant adenovirus by incorpotation 
of a TSG frequently lost in human cancers to the viral genome by a homogenous recombination 
of the gragment on shuttle plasmid [12]. Expression of the transferred genes by intratumoral 
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Abstract

The prospect of harnessing the cytocidal properties of viruses for targeted attacks on cancer cells, has 
prompted an ongoing development in the design of manipulated adenoviral vectors. The adenovirus is efficient 
in gene transfer, and serves as vector in clinical gene therapy.  But its genome contains genes that code for 
products that bind to and inactivate tumor suppressor gene products, and it has been demonstrated that the 
deletion of the early genes produces oncolytic adenoviruses that replicate in cancer cells and kill them. New 
forms of oncolytic viruses with deletions of some viral genes like E1B and being armed with anticancer cDNAs 
contributed to enhanced cytotoxicity of adenoviral vectors. The engineering of the adenoviral vector could 
be useful for the development of biotherapeutic agents, as it could expand the list of anti-oncogenes used in 
anticancer biotherapy.
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injection remarkably reduced the tumor size of nude mice xenograted 
human nasopharyngeal carcinoma (NPC), and the in vitro study has 
shown that the transferred gene exertted tumor suppressive effects 
by enganging intracelllular signaling pathways to promote apoptosis 
and prevent cell cycle progression [13,14].

These strategies aim at introducing a new modality in anticancer 
biotherapy and have entered into preclinical studies and different 
phases of clinical trials. The present paper reviews the current advances 
in the field of oncolytic adenoviruses to assess their prospective utility 
as expression vectors for tumor suppressor genes (TSG) to be used in 
future anticancer biotherapy.

The adenoviral genomic composition and genetic basis 
of using adenovirus as anticancer therapy agent

Viruses encode for specific genes to kill the infected cells by 
multiple mechanisms including apoptosis triggering; it is induced 
directly by viral genomic products or through activation of death 
receptors and p53. HAdVs can infect a broad range of human cells 
with high efficiency and achieve high levels of transgene expression. 
Moreover, the viral genome adenovirus (Ad) is genetically stable and 
the inserted foreign genes are generally maintained without change 
through successive rounds of viral replication. These features make 
Ad vectors attractive in gene therapy.

The replication cycle of HAdVs is divided into two stages: the 
early stage and the late stage. During early stage, the viral proteins 
are expressed from six distinct early regions, to function as modifiers 
of the microenvironment so as to favor the replication of the 
adenoviruses. In the later stages of viral infection, the viral progeny is 
formed after assembly with structural proteins, viral load is increased 
to a threshold, and viruses then exploit apoptotic machinery to 
facilitate the efficient viral progeny release and spread. 

The early regions of Ad genome include E1A, E1B, E2A, E2B, 
E3 and E4. In adenovirus, apoptosis inducing proteins include, E1A 
12S and 13S proteins, E3, E4 of adenovirus [15]. The adenovirally 
encoded apoptotic regulators also function to escape inflammatory 
reactions and host’s immune responses.

E1A, a pro-apoptotic adenoviral protein

E1A is a nuclear protein and a known regulator of gene expression. 
Although E1A does not bind to DNA directly, it interacts with a large 
number of cellular proteins functioning as transcription regulators 
[16]. Activation of c-Jun may be the result of transcriptional 
regulation, e.g. the coactivator p300 can participate in transcription 
of the jun gene [17,18].

CRAds based on the deletion of E1A has been generated, with 
introduction of a mutation in the pRb-binding domain of E1A. It has 
been shown to replicate in tumor cells with disrupted Rb signaling 
pathway [19,20]. These CRAds with manipulation in a single 
adenoviral antigen exhibited potential for cancer therapy, but they 
still replicate and cause some cytopathic effects in normal cells in vitro 
[21,22].

E1B, a viral genomic product that binds and interferes the 
activities of tumor suppressors

The 55K proteins encoded by early regions 1B (E1B-55K) from 
HAdV types 2, 5 and 12 contribute to complete cell transformation 

by antagonizing host apoptosis and growth arrest. In the case 
of Ad2/5 E1B-55K products, these growth-promoting activities 
correlate with their ability to direct transcriptional repression of p53-
responsive promoters by binding to p53 [23]. Together with human 
papillomavirus (HPV) encoding p53 inhibitor protein E6, E1B also 
abrogates transcriptional induction of downstream pro-apoptotic 
factors by p53 through molecular interactions [24,25].

CRAd, which are capable of cancer-selective replication and 
oncolysis, have received widespread attention as potentially ideal 
tools for anticancer biotherapy.  ONYX-015(dl1520), is a CRAd with 
E1B deletion based cancer selective replicative potential and a mutant 
adenovirus created by deletion in the gene coding for E1B that 
enables selective replication in malignant cells with dysfunctional 
p53 signaling pathway [26-29]. Clinical trails of ONYX-015 in 
combination with chemotherapy have yielded remarkably good 
efficacy and safety in patients with head and neck cancers [30]. As for 
hepatobiliary cancers, the clinical trial of intralesional ONYX- 015 
showed sufficient safety but limited therapeutic effects [31]. These 
studies suggest that for biliary cancers, further efforts to develop 
CRAds are warranted, so as to exert more selective replication and 
effective oncolysis than ONYX-015.

Ad Max, the Ad5 based adenoviral vector we used as expressor 
of tumor suppressor BLU [12], is known to be disrupted in E1 and 
E3 [32,33]. E1B expression was still detected on immunoblotting.  
Several strains of siRNAs have been designed by searching for the 
AA dinucleotides in the full length sequence of the E1B 55K coding 
gene (nucleotides 21093509 in Human adenovirus C serotype 
5, complete genome; AY339865.1, GenBank), Each AA and the 3’ 
adjacent 19 nucleotides were chosen as potential siRNA target sites. 
They were listed in Table 1. The oligonucleotides were synthesized 
and tested for the potential of E1B silencing.  Data showed that some 
of the fragments remarkably enhanced cytotoxicity when introduced 
to host cells (Figure 1). It has suggested that knockdown of E1B by 
RNA interference potentiates killing of tumor cells by adenovirally 
transferred BLU.

Figure 1 siRNAs against adenoviral E1B enhanced adenoviral 
cytotoxicity to NPC derived HNE1 cells.  The cells previously infected 
with recombinant BLU Ad5 were transfected with anti E1B siRNAs 
designed as described in the text. Viability was assayed by co-
incubating with CCK-8 kit and registered with an ELISA reader. The 
numbers below the x-axis depicted the species of oligonucleotides 
tested: 1. Scramble RNA; 2. AS22A5P; 3. AS22A5Q; 4. AS22A5R; 5. 
AS22A5S; 6. AS22A5T. Data was derived from at three independent 
tests.

The silencing of oncogene in cancer cells mediated by siRNA 
could be utilized as a therapeutical approach.  When a fragment of 

Table 1:  Sequence of anti E1B siRNAs used in the present study.

AS 22A5P Sense       :  GAUCAAGGAUAAUUGCGCUtt
Antisense :  AGCGCAAUUAUCCCUUGAUCtg

AS22A5Q Sense       :  GCUUCUAUGGGUUUAACAAtt
Antisense :  UUGUUAAACCCAUAGAAGCtt

AS22A5R Sense       : GGCUCUAGCCGAUGAAGAUAtt
Antisense :  UAUCUUCAUCGCUAGAGCCaa

AS22A5S Sense       :  AGAUGUAGCAUGAUAAAUAtt
Antisense :  UAUUUAUCAUGCUACAUCUaa

AS22A5T Sense       :  AGACGAUUUUGACAAUUAtt
Antisense :  UUUUUGUCAAAUGCGUCUca
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short hairpin RNA (shRNA) against mutant K-ras was introduced to 
an oncolytic adenovirus ONYX-411, a 10-fold increase of the growth 
inhibition potency has been observed in cancer cells [34]. It has been 
noted that improvement of gene knockdown, curtail of emergence of 
viral escape mutants could be achieved by delivery of multiple shRNA 
delivery [35].    

The E2 region of the viral genome encodes multiple proteins, 
including E2A functioning as a DNA binding protein (DBP).  It 
possesses specific affinity for single stranded viral DNA, and the 
binding plays a role in the initiation and elongation of viral DNA 
synthesis during the early phase of Ad infection. During the late 
phase of infection, DBP plays a central role to activate the major 
late promoter (MLP) [36]. New generations of Ad5 based vectors 
have been introduced by additionally deleting viral genes, so as to 
attenuate their expression to avoid leakage problems. Vectors with 
E1, E2A/B, E3 and E4 deletions in different combinations showed 
low in vitro cytotoxicity and higher stability in vivo, but it remains 
to demonstrate whether the new second and third generation vectors 
significantly prolong transgene expression in vivo [ 37,38].

Immunoregulatory functions of E3 proteins

HAdVs are grouped into species A (HAdV-A) through species G 
(HAdV-G), and the level of sequence diversity is as high as 40% [39]. 
The size and composition of the E3 region differs considerably among 
Ad species, and the E3 transcription unit of HAdVs encodes proteins 
with immunoregulatory activities; Differential immunomodulatory 
functions encoded in early transcription unit 3 (E3) may play an 
important role in disease [40-42]. Common immune evasion functions 
in E3 proteins from species C have been described. Ads express 
species C E3 protein and enable the viruses to evade recognition and 
elimination by the host immune system by various mechanisms. An 
E3 protein, E3/19K retains MHC class I molecules and MHC class 
I-related chain A and B in the endoplasmic reticulum of infected cells, 
thereby suppressing recognition by cytotoxic T lymphocytes [43-46] 
and activation of natural killer (NK) cells [47,48]. It has been reported 
that an E3 protein E3/49K from species D targeted uninfected cells; it 
specifically binding lymphocytes and that cell surface protein tyrosine 

Figure 1: siRNAs against adenoviral E1B enhanced adenoviral cytotoxicity 
to NPC derived HNE1 cells.  The cells previously infected with recombinant 
BLU Ad5 were transfected with anti E1B siRNAs designed as described 
in the text.  Viability was assayed by co-incubating with CCK-8 kit and 
registered with an ELISA reader. The numbers below the x-axis depicted 
the species of oligonucleotides tested: 1. Scramble RNA; 2. AS22A5P; 3. 
AS22A5Q; 4. AS22A5R; 5. AS22A5S; 6. AS22A5T.  Data was derived from 
at three independent tests.

CD45 was identified as its receptor [49]. Such functions would be 
important for the utility of species D Ads as vectors for vaccination 
and gene therapy in humans, given that these have a number of 
favorable features [50]. Other common E3 proteins (E3/10.4K–14.5K) 
down-regulate various apoptosis receptors from the cell surface or 
affect TNF-α–induced signaling [45,51]. Disruption in this genomic 
portion may enhance host antiviral immunity against tumor cells 
harboring the mutant adenovirus during the therapy.

Adenovirus E4 open reading frame 4 (E4orf4)

The protein encoded by adenovirus E4 open reading frame 4 
(E4orf4),  protein (14-kDa) is a multifunctional viral regulator which 
functions to regulate gene expression at multiple steps, alternative 
splicing events, phosphorylation of viral and cellular proteins and 
protein translation [52-55]. Its expression of E4orf4 at high levels 
also induces caspase- and p53-independent, non-classical apoptosis 
in many human tumor cells [56,57]. Oncogenic transformation 
of primary cells sensitizes the host to cell death induced by E4orf4 
induced.

Oncolytic adenoviruses: adenoviruses manipulated to 
be conditionally replicated in tumor cells

The replication of adenovirus depends on the entry of the host 
into the S phase of cell cycle. A tumor suppressor, retinoblastoma 
tumor suppressor (pRb) prevents the entry to S phase. Within the 
E1A molecule, there is a product of the retinoblastoma susceptibility 
gene binding site [58,59]. E1A gene is responsible for inactivation 
of several proteins, including retinoblastoma, allowing entry into 
S-phase. When E1A binds the protein pRb, transcription factor E2F1 
dissociates and the host cells are prompted to enter the S phase. 
The adenovirus with deletion of the pRb-binding E1A has reduced 
replication potential in normal cells with intact pRb function, but 
the replicative ability in cancer cells is unaffected [60,61]. The Ad-
delta-24 with the deletion of the binding motif with 24 amino acid 
residues shows an enhanced efficacy in treating glioma-carrying 
mutant pRb [62]. 

The oncolytic adenoviruses are converted from non-oncogenic 
adenoviruses, of serotypes 2 and 5 through certain manipulations. The 
mutant viruses have gone through three generations of development 
as defined by the mutations introduced [63]. And the modification of 
adenoviruses include:

Attenuation

In this category, adenoviral vectors of three generations have 
developed. During the process of viral replication, tumor cells are 
killed by ablation of the viral vectors. The first generation oncolytic 
Ads are administered in combination with chemotherapy and/or 
irradiation to achieve efficacy, wtih accetable level of safety. Oncolytic 
Ads of second generation are armed with therapeutic transgenes, to 
enhance the efficacy by increasing virion release, spread and effect 
of bystander. Oncolytic Ads of third generation are modified in viral 
capsid for transductional detrageting of normal cells but targeting 
cancer cells.

Targeting

A conditionally replicative adenovirus (CRAd) was created 
by deleting a 24 base pair deletion in the retinoblastoma                                              
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(Rb)-binding domain of the E1A protein (Ad5- Δ24E3). Whenever 
the pRb binding site on Adv early antigen interfring with cell cycle is 
manipulated, induction of S-phase in host cells is disabled [64], and 
retinoblastoma is silenced, this restricts Ad5-Δ24E3 to replication 
only in proliferating cells, such as tumour cells.

Manipulations introduced to Adv genome to produce 
oncolytic virions

Delta-24-RGD, a tumor-selective, replication-competent 
adenovirus with augmented cellular infectivity [65,66]. The deletion 
of RGD motif was introduced in a mutant viral E1A. The mutant 
AdV with Delta-24-RGD selectively replicates in tumor cells lyse 
the malignant cells in which pRb is inactivated. Delta-24-RGD’s 
augmented infectivity is due to an insertion of an RGD-motif in the 
fiber knob, allowing for integrin-mediated infection, independent of 
cocksackie-adenovirus receptors (CAR) [67]. Intratumoral injection 
of Delta-24-RGD to xenografted human gliomas resulted in a 
remarkably longer survival than controls [68,69].

Onyx-015 as previously mentioned, was originally named Ad2/5 
dl1520 [29,30,70]. It is an experimental oncolytic virus created 
by genetically engineering [29,30]. The E1B-55kDa gene has been 
deleted allowing the virus to selectively replicate in and lyse p53-
deficient cancer cells [70]. ONYX-015 is an E1B-55kDa gene-deleted 
adenovirus which selectively replicates in and p53-deficient cancer 
cells and lyses them. Clinical trial suggested that tissue destruction 
was also highly selective, most in tumor lesions; significant tumor 
regression occurred in over 20% of evaluable patients; no toxicity to 
injected normal peritumoral tissues was demonstrated. That ONYX-
015-induced necrosis in p53 mutant tumors more likely than were p53 
wild-type tumors. The data implied a feasibility of modifying genome 
region coding for anti-apoptotic E1B as a promising approach to 
generate OA.

Adenovirus armed with anticancer cDNA: an ideal 
anticancer agent needs to be specific in action and 
should not harm the normal cells 

To date, cancer is recognized as a disorder of multiple genetic 
defects, the development of which is aided by compromised immune 
surveillance and dysregulation in programmed cell death (PCD) 
[71,72]. Different abnormalities in PCD may promote carcinogenesis 
by hampering host immune surveillance, and also renders cancer cells 
resistant to antitumor therapies including chemo- and radiotherapy, 
as the cell killing in such context is mediated by activation of 
apoptosis. The inherited defects contributing to the immune evasion 
and resistance to therapy can be corrected by transfer of cDNAs 
with tumor suppressive activity. Cancer-targeting gene virotherapy 
(CTGVT) is an approach that uses an oncolytic adenoviral vector 
containing antitumor gene fragments as a combination of gene 
therapy and oncolytic adenovirus. When armed with some 
anticancer cDNA or siRNAs, coding for pro-drug converting 
enzymes, immunoregulatory cytokines, or pro-apoptotic proteins, an 
adenovirus could be adapted as a gene therapy vector.

Apoptosis is a precise cell death process inside the human body. 
Extrinsic or death receptor-induced apoptosis has been intensively 
studied. It is triggered by ligation of death receptors to death ligands 
[73]. One of the death ligands, TRAIL has gained much attention 

as a targeted therapeutic candidate and has therefore entered the 
Phase I clinical trial TRAIL has been known for its preferential 
killing of malignantly transformed cells, and low cytoxicity has 
been demonstrated [74-76]. The intratumor administration of an 
adenoviral recombinant of TRAIL has proved to possess therapeutic 
effect in the primary and metastatic models of xenografted human 
tumors in mice. The E1B deleted oncolytic adenovirus ZD55 armed 
with the death ligand TRAIL and a second mitochondrial activating 
component (Smac) contributed to the complete eradication of human 
hepatoma xenograft in nude mice [77].  

The extrinsic apoptotic pathway is regulated by inhibitor 
proteins, including the cellular FLICE/caspase-8 inhibitor protein 
(cFLIP), which negatively regulates the activation of caspase-8 as a 
decoy binding partner [78]. The coding gene of cFLIP produces up 
to eleven isoforms of transcripts by alternative splicing, and three 
c-FLIP protein isoforms derived from distinct mRNA splice variants 
have been identified, namely c-FLIPL, c-FLIPS, and c-FLIPR [79]. The 
long c-FLIP isoform, c-FLIPL, is structurally similar to procaspase-8, 
with two tandem DEDs at its N-terminus and a catalytically inactive 
caspase-like domain at its C-terminus [80]. It has been reported that 
silencing c-FLIPL in ovarian cancer cells with RNAi induced apoptosis 
leading to significantly decreased tumor development and reduced 
cellular proliferation in vivo [79,80].  This suggests that recombinant 
adenovirus incorporating anti FLIP RNAi may exert anticancer 
efficacy. One application of oncolytic adenovirus would be transfer 
of siRNA targeted against anti-apoptotic molecules to enhance host 
antitumor immunity.

We have shown that BLU/ZMYND10, encoded by a TSG mapped 
on a chromosomal region, 3p21, frequently lost in variety of human 
tumors inhibited NF-kB signaling, and hence the anti-apoptotic 
factor it transcriptionally induces, e.g. cIAP-2, cFLIP, to promote 
TRAIL trigering apoptosis when BLU is transferred by AdV 5 vector 
[13].

Thus tumor killing potential of the oncolytic adenoviruses could 
be enhanced by genetic modifications with insert of sequences coding 
for (1) enzymes converting an innocuous pro-drug into a cytotoxic 
agent [81,82]; (2) proteins that (at least theoretically) selectively 
induces a programmed death response in malignant cells, since tumor 
growth frequently depends on the defects in the apoptotic machinery 
[83]; or (3) short hairpin RNAs that interfere with the activities of 
factors required for the survival of transformed, but not normal cells 
[84]. 

The efficacy of adenoviral therapeutic recombinants
Several mutant genetic lesions within adenoviral genome leading 

to oncolytic activities have been described [85,86]. The production 
of oncolytic adenoviruses involves the deletion of the E1 through E4 
genes, and disable the functions necessary for replication in normal 
cells but still permits replication of the mutant viruses with cytocidal 
effects in cancer cells [87].

ONYX-015 and ZD55 were both generated by deleting the 
E1B55 kd gene. In cancer patients, durable regressions are achieved 
in combination of recombinant adenovirus administration with 
chemotherapy (e.g., cisplatin) [88,89]. In line with this, the combined 
administration of ONYX-015 and cisplatin has provided potent 
antitumor activity, but further improvement of the oncolytic 
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adenovirus using a single virotherapeutic agent is expected. An 
armed therapeutic oncolytic adenovirus system, the ZD55 strain is 
not only devoid of the E1B 55-kd gene, similar to ONYX-015, but 
is also incorporated with foreign genes with antitumor activity in 
the viral genome, e.g. TRAIL. IL-24 or SOCS3 [6, 90, 91]. The ZD55 
strain exhibits similar cytopathic effects and replication kinetics with 
ONYX-015 in vitro; however, the inserted gene is expressed and the 
expression level increases with replication of the virus. ZD55 not 
only replicates selectively in tumor cells and lyses them, but also 
releases the therapeutically active antitumor agents to the tumor 
microenvironment.

Manipulated oncolytic adenoviruses in which viral and/or 
cellular genes are placed under the control of artificial tumor-
specific promoters have been developed and show promising 
results in anticancer therapy in animal models. Based on the fact 
that a fetal protein, alpha-fetoprotein (AFP) is switched on during 
the hepatocarcinogenesis, AFP promoter was used to control the 
expression of the E1A viral gene in hepatocellular carcinoma (HCC) 
cells.  The manipulation achieved preferential replication of the pro-
apoptotic E1A gene over-expressing Ad in AFP-producing HCC cells 
[92]. Midkine mRNA is over-expressed in osteosarcoma cell lines, 
and an oncolytic adenovirus has been constructed by inserting the 
midkine promoter upstream of the coding portion of the adenoviral 
genes, to drive the expression of the adenoviral antigens [83]. 
Infectivity and in vitro cytocidal effects of the engineered virus were 
significantly enhanced in target cells of osteosarcoma. These findings 
indicate that gene manipulation allows tailored virotherapy and 
facilitates more effective treatments for osteosarcoma. 

NPC is a malignant tumor that is endemic to certain regions in 
the world, including Alaska, North Africa, southeast and southern 
China [93]. In its undifferentiated form NPC is tightly associated 
with latent infection of a lymphotropic human herpesvirus, the 
Epstein-Barr virus (EBV); therefore, EBV-dependent transcriptional 
targeting has been exploited in NPC biotherapy. The viral replication 
initiation site of EBV, OriP, was used to construct a conditionally 
replicating adenovirus, termed adv. OriP. E1A [17]. Extensive cell 
death was observed in EBV-positive NPC cells, but no cytoxicity was 
noted in a panel of EBV-negative cells, which were derived from NPC 
and fibroblasts from the nasopharynx. Adenoviral replication was 
demonstrated only in EBV-positive cells, and a combination of local 
irradiation and adenoviral administration caused the xenografted 
tumors to completely disappear within two weeks.

Similar effects were observed in metastatic gastrointestinal cancer 
treated with a virus in which the therapeutic genes were controlled 
by the carcinoembryonic antigen (CEA) promoter [94]. Recombinant 
adenoviruses combined with other tumor-specific promoters, like 
human TERT [95,96] or E2F [97] , showed effects in a broad range 
of cancer types.

Conclusion
1. 	 As an efficient tool to transfer gene, adenovirus could be 

manipulated as a potent vector in anticancer therapy and 
vaccination by modifying its genomic components.

2. 	 The successful construction of several strains of oncolytic 
adenoviruses has suggested that viral vectors specifically 
replicating in malignant cells, and armed with anticancer 

cDNA could achieve therapeutic effects.  As a disease of genetic 
deficiency, cancer could be treated with a biotherapeutic approach 
by introducing different genes to correct a variety of functional 
defects. 

3. 	 Oncolytic adenoviruses with inserted anticancer cDNA would 
expand the list of therapeutic target genes and improve the 
efficacy of biotherapy.

Availability of data and material
The sequence of adenoviral E1B coding gene used in the present 

study is available in complete genome of Human adenovirus C 
serotype 5, AY339865.1 in Gen Bank, NCBI (Human adenovirus C 
serotype 5, complete genome - Nucleotide – NCBI.

http://www.ncbi.nlm.nih.gov/nuccore/33465830/).
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