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Abstract
Lung Cancer in Never-Smokers (LCINS) is one of the leading causes of cancer patient deaths in the United States. Unlike lung cancer 

onset by cigarette smoking, LCINS is not as readily understood and research on the subject has been conflicting. Thus, early diagnosis 
and prevention are key in reducing mortality among LCINS patients. In this study, the Prostate, Lung, Colorectal, and Ovarian (PLCO) 
dataset contains more than 155,000 participants and over 36,000 never-smokers. Data from more than 5,000 patients with LCINS were 
analyzed using R and Excel software to determine risk factors of LCINS. The factors analyzed for predictive power in LCINS incidence 
were age, height, weight, body mass index, race, income, family history, and secondary smoke exposure. Multiple statistical methods, 
including t-tests, ANOVA tests, and logistic regression, were implemented to assess each factor. Through comparison and corroboration 
of results from these statistical methods, age and race were identified as the key factors that had statistically significant evidence as 
potential influences in LCINS incidence. This was indicated by strong positive correlation between age/race and the predicted probability 
of LCINS development with a statistically significant p value. Other physical characteristics did not appear to have a significant impact on 
the likelihood of developing LCINS. In addition, the statistical method that provided the most information regarding a factor’s power was 
logistical regression due to the binomial outcome of whether or not a patient has LCINS. It enables a deeper elucidation of how individual 
factors influence the probability of LCINS development. These results provide valuable insights into demographic risk factors for LCINS and 
lay the groundwork for future investigations, potentially including the application of advanced analytical techniques such as deep learning 
algorithms to explore additional predictive factors for LCINS and other lung cancer subtypes.
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INTRODUCTION
Lung Cancer in Never-Smokers (LCINS) is one of the leading causes of 

cancer mortality, leading to approximately 20,000 deaths in the U.S. and 
contributing to 10-20% of lung cancer deaths with increasing incidence 
[1]. Research literature indicates that LCINS is distinct from smoking-
related lung cancer with differences in molecular triggers and treatment 
responses [2]. Furthermore, several epidemiologic studies suggest 
that a unique genetic subtype of lung adenocarcinoma from East Asian 
never-smokers is distinct from other geographical subtypes of cancer 
driven primarily by targetable oncogenic drivers [3]. As a result of these 
differences, lung cancer incidence and mortality have been cited to be 
slightly lower in never-smokers when compared to smokers.

Some risk factors are commonly considered to be associated with 

lung cancer are age, ethnicity, genetics, and gender [4,5] Age is often 
an implicit modifier, meaning that never-smokers could be exposed 
to lung carcinogens (i.e., secondary smoke from cigarettes, radon gas) 
and accumulate DNA and cellular damages over time. In addition, some 
researchers hypothesize that the East Asian subtype of lung cancer 
is partially explained by genetic differences [6]. Further investigation 
into the risk factors of LCINS often yields conflicting and inconclusive 
results. For example, Schwartz et al. hypothesized from a case control 
study in Michigan that African American never-smokers do not have 
higher incidence of lung cancer than white people [7]. However, Thun et 
al. concluded from their review of the literature that “African American 
women never smokers had significantly higher incidence rates from lung 
cancer than women of European descent who had never smoked” [8,9]. A 
more extensive query into lung cancer screening datasets may improve 
early diagnosis and prevent LCINS in susceptible populations.

In this study, the Prostate, Lung, Colorectal, and Ovarian (PLCO) 
Cancer dataset [10] was migrated from Excel to R and analyzed via 
t-test, ANOVA test, and logistical regression. The dataset is derived from 
a large population-based randomized trial of approximately 155,000 
participants in the United States enrolled between 1993 and 2001 [11]. 
It contains more than 5,000 never-smokers with LCINS, serving as an 
epidemiologic and imaging resource to identify risk factors and imaging 
features of LCINS. The parameters under investigation were age, height, 
weight, race, family history of lung cancer, and exposure to smoking 
during one’s lifetime. The combination of logistic regression, t-tests, 
and ANOVA (Analysis Of Variance) tests indicates that age and race are 
significant contributing factors to LCINS. These results could be used in 
future studies involving machine learning that could improve prevention 
and diagnosis of LCINS and other lung cancers [12]. The statistical 
methods used in this study can be applied to other datasets where the 
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outcome is similarly binary.

MATERIALS AND METHODS
Data Compilation and Analysis

R is a versatile open-source platform that can help run more advanced 
statistical models and techniques such as partial least-squares regression 
and logistic regression [13]. It can create easy-to-customize plots that 
visualize statistical results effectively. Additionally, R can manage large 
amounts of data in the forms of arrays, matrices, and other types of data 
frames. Users can also download packages to perform multiple types of 
data analyses according to their needs and specifications. 

The PLCO dataset contains anonymized data from the participants 
of the PLCO Cancer Screening Trial, which was a large, randomized 
controlled trial conducted between 1993 and 2009 to evaluate the 
efficacy of screening for prostate, lung, colorectal, and ovarian cancers

In this study, the data compiled from the PLCO dataset were filtered 
for nonsmokers by selecting all participants who had not smoked any 
cigarette packs at the time of the study. This resulted in a total of 5,124 
LCINS participants being analyzed. Each nonsmoker was then designated 
either 0 for no LCINS or 1 for LCINS. The proportions of sample groups 
for each risk factor were calculated by taking the average of each data 

column containing the designated numbers. The data was imported into 
R and analyzed with logistic regression, t-test, and ANOVA testing using 
the readxl package.

STATISTICAL METHODS
t-test – This is an inferential statistical test to determine if the unknown 
population means of two sample groups are equal. t-tests are usually 
used when the population variances are not known (14). In this study, 
t-tests were applied for analyzing the parameters including age, height, 
weight, and BMI.

The t-value is compared to a critical t-value to assess whether the 
difference between the sample means is statistically significant. If the 
absolute t-value exceeds the t-critical value at a chosen significance 
level (α) which is typically 0.05, the null hypothesis that the means are 
equal is rejected. Otherwise, there is not enough evidence to suggest a 
significant difference between the groups.

The t-value is calculated by dividing the difference between the two 
sample means by the standard error of the difference. The formula for 
the t-value is:

X̄1 and X̄2 are the sample means.

​s1
2 and s2

2 are the variances of the two groups.

n1 and n2 are the sample sizes of the two groups.

Table 1: Comparison of the advantages and disadvantages of statistical tests and models.

Statistical Test/Model Pros Cons

T-test

•	 Can be used to compare the means of two different 
groups and determine whether the difference of 
means is statistically significant

•	 Allow for both populations variances to not be 
equal (assumption in statistics that is usually 
needed to compare two different groups)

•	 Can be used when the sample sizes of the two 
groups are small or the population variances are 
not known

•	 Easy to understand and interpret the results

•	 Not applicable for three or more 
independent variable groups.

•	 Requires assumptions that both 
populations are normally distributed

•	 Lower degree of freedom requires higher 
t-values to reach t-test significance

Logistical Regression

•	 Easy to implement and interpret

•	 No assumptions are made about the distributions 
of the variables involved

•	 Provides coeffcient size and direction of 
association (positive or negative)

•	 Provides high accuracy results when dataset is 
binomially distributed

•	 Less prone to overfitting than other models

•	 Cannot be used if number of observations 
is less than number of variables

•	 Assumes linearity between dependent 
and independent variables

•	 Dependent variables must be discrete 
(i.e.counting numbers as opposed to in-
between numbers like height)

ANOVA Test

•	 Can be used to assess whether multiple sample 
means are equal

•	 Limits the type I error (false positive rate)

•	 Overall a more powerful statistical test than t-test

•	 Can only determine that one group mean 
is different, not which one

•	 Assumes that each case is independent, all 
distributions are normal, and variance of 
data in groups are homogeneous
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Z-test – If two different sample groups’ proportion means need to 
be tested, a two-sample Z-test is preferably used to compute Z-value in 
determining whether the two proportion means are different. In this 
study, Z-tests were used for analyzing the parameters including race and 
family history.

“Ppool”, a parameter called pooled proportion, is typically used for 
a two-proportion Z-test. The pooled proportion combines the data from 
two groups to create an overall proportion estimate, which is then used in 
the calculation of the Z-value. 

The Z-value (or Z-score) is a statistical measurement that describes 
the position of a data point relative to the mean of a group of data, 
expressed in terms of standard deviations. It shows how many standard 
deviations a particular data point is away from the mean. 

The Z-value needs to be compared to a critical Z-value to decide 
whether the difference between two proportions is statistically 
significant. The critical Z-value is a threshold in hypothesis testing that 
marks the boundary between the rejection and non-rejection regions 
for the null hypothesis. It is used to determine whether a test statistic 
(Z-value) is extreme enough to reject the null hypothesis.

For a two-tailed test, the critical Z-value is approximately 1.96 at the 
significant level (α) of 0.05. If the calculated Z-value is greater than 1.96, 
the null hypothesis is rejected because the Z-value falls in the rejection 
region.

Analysis of Variance (ANOVA)  – ANOVA assesses whether the 
population means of more than two sample groups are all equal to 
each other. In this study, ANOVA was utilized to analyze the parameters 
including race, income, and secondary smoke exposure.  In the cases of 
age, height, weight, BMI, and family history, ANOVA test would not be 
appropriate since there are only two groups: patients with family history 
of LCINS and patients with no history of LCINS. 

To perform an ANOVA test, the F-value, which is the ratio of expected 
variation to unexpected variation, must be calculated and compared to 
a critical F-value. This is done by first calculating the grand mean, also 
referred to as G/N. G represents the sum of all the data points, and N is 
the total sample size.

The F-value is represented by comparing the mean squares (between) 
to the mean squares (within). This is achieved through the following 
formulas:

Let k = number of groups

xi = individual data value

x̄ = group average

n = total sample size across all groups

Sum of squares within (SSW) =  

Degrees of freedom within (df_within) = n – k

Mean squares within (MSW) = SSW/df_within

Sum of squares between (SSB) =  

Degrees of freedom between (df_between) = k - 1

Mean squares between (MSB) = SSB/df_between

F-value = MSB/MSW

This F-value is compared to a critical F-value dictated by the 
appropriate degrees of freedom and number of groups. If the F-value is 
greater than the critical F-value, then the differences between the groups 

are statistically significant.

Logistic Regression – Logistic regression is a statistical model that 
is primarily used in datasets with only two outcomes for the dependent 
variable (15). Logistic regression may not be applicable for secondary 
smoke exposure and family history since the number of patient groups 
is smaller than most other risk factors where logistic regression is 
appropriate.

The comparison of these statistical test and models is provided in 
table 1. 

RESULTS
Impact of Age on Incidence of LCINS

Previous studies indicated that age significantly impacts the 
incidence of lung cancer [16,17]. This investigation further demonstrates 
that age is also an important determinant in occurrence of lung cancer 
in never-smokers. While lung cancer can affect both smokers and never-
smokers, the risk factors and patterns differ. As individuals age, several 
factors come into play. First, the risk of developing lung cancer increases 
with age, with a notable rise after 50. In women, hormonal changes 
associated with menopause can influence the risk [18]. Environmental 
and occupational exposures, like prolonged exposure to pollutants, 
asbestos, and secondhand smoke, accumulate over time, raising the risk. 
Genetic factors may become more pronounced with age, and a weakening 
immune system can impact the body’s ability to combat cancer cells 
[19]. Cumulative exposures and age-related changes in the respiratory 
system and lung tissue make the lungs more susceptible to damage and 
carcinogenesis. While the risk of lung cancer in never-smokers is generally 
lower than in smokers, it is not negligible, and age is a significant factor in 
its development [7]. Early detection and prevention measures are crucial 
to reduce the risk as never-smokers age [20]. 

The analysis of PLCO data revealed a strong positive association 
between age and lung cancer incidence, as indicated by a high linear 
correlation with an R-squared value of 0.92 (Figure 1A). Additionally, the 
logistic regression model demonstrated a clear upward trend between 
age and the predicted probability of developing lung cancer, supported 
by a statistically significant p-value (p < 0.05) (Figure 1B). The results 
of a t-test further confirmed the significance of age in relation to LCINS 
incidence, with a t-value of approximately 2.57, surpassing the critical t 
value of 1.65 (Table 2). Hence, these findings collectively establish age 
as a substantial and noteworthy factor contributing to the incidence of 
lung cancer.

Evaluation of the Effects of Height, Weight, and BMI on 
the Incidence of LCINS

There is evidence suggesting that height, weight, and BMI may impact 
the incidence of LCINS. The exact relationship between these factors and 
lung cancer risk is complex and not fully understood, requiring further 
investigation [21]. 

Several studies have found a positive association between height and 
the risk of LCINS. For example, a study published in 2017 found that taller 
height was associated with an increased risk of lung cancer among never-
smoking women in the United States [22]. One possible explanation is that 
taller people have larger lungs, which may lead to increased exposure to 
environmental toxins and pollutants that can cause lung cancer. However, 
other studies have found no association between height and lung cancer 
risk in never-smokers. Therefore, more research is needed to confirm the 
relationship between height and the risk of LCINS.
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Body weight and BMI may also play a role in lung cancer risk, 
although the evidence is not consistent. Obesity has been linked to an 
increased risk of several types of cancer, including LCINS [23]. One 
possible explanation is that excess body fat can cause inflammation and 
increase levels of insulin and other growth factors that promote the 
development of cancer [24]. However, the relationship between BMI and 
lung cancer risk is not entirely clear. Some studies have suggested that 
higher BMI may be associated with a decreased risk of LCINS [25]. The 
reasons for these conflicting findings are not fully understood and may be 
the result of differences in study design, population characteristics, and 
other factors. More investigation is needed to determine the impact of 
body weight and BMI on LCINS.

The results of our analysis indicate that weight, height, and BMI are 
not significant factors in the incidence of LCINS. All three t-tests, which 
assessed the impact of these variables on LCINS incidence, yielded t-values 
lower than the t-critical value of 1.65 (Table 3A, Table 3B, Table 3C). This 
suggests that these factors do not play a significant role in influencing the 
risk of LCINS. In fact, only t-values higher than the t-critical value would 
suggest a significant effect on LCINS incidence. Moreover, this finding is 
further reinforced by the logistic regression analysis, where high p-values 
exceeding 0.05 (though specific values are not provided in this summary) 
indicate that weight, height, and BMI are not statistically significant 
predictors of LCINS incidence. Therefore, it can be concluded that these 
physical characteristics do not appear to have a substantial impact on the 
likelihood of developing LCINS.

Race
There is some evidence indicating that race can play a role in the 

incidence of LCINS. White people overwhelmingly represent LCINS 
cases, followed by Asian, black, Hispanic, and Native American people. 
Interestingly, logistic regression reveals a lower incidence of Asians 
with LCINS compared to other races. Nevertheless, several studies have 
suggested that Asian populations may be at higher risk of developing lung 
cancer in never-smokers compared to other racial groups [26]. The higher 
prevalence of driver mutations in genes such as EGFR and KRAS [27] may 
account for the higher incidence of lung cancer in never-smokers among 
Asian/Pacific Islanders. In addition to genetic factors, environmental 
factors, such as exposure to secondhand smoke, radon, and other air 
pollutants, may also increase the risk of LCINS. These exposures may vary 
depending on race.

The results of our investigation, involving a combination of 
statistical tests and a comprehensive evaluation of race as a potential 
factor in LCINS, provide compelling evidence (Figure 2A). Specifically, 
the Z-tests conducted for various population groups suggest that the 
Caucasian population exhibits a statistically significant proportion of 
LCINS individuals with a Z-value greater than the critical Z-value of 1.96 
(Table 4A), indicating that race may play a crucial role. Moreover, our 
logistic regression model underscores this by revealing that Caucasian 
individuals generally face a higher risk of lung cancer when compared to 
other racial groups included in this study (Figure 2B). This conclusion is 
reinforced by a high p-value obtained from the logistic regression, further 
emphasizing the significance of race as a contributing factor. Additionally, 
the ANOVA test results, with an F-value surpassing the critical F-value of 
2.21, decisively reject the null hypothesis (Table 4B), providing strong 
evidence that race indeed plays a significant and noteworthy role in 
LCINS incidence.

Income
There is evidence to suggest that income may play a role in the 

incidence of lung cancer among never-smokers [28]. People with lower 
incomes, especially those within the $20,000 - $49,000 and $50,000 - 
$99,000 income brackets are significantly affected. However, this effect 
was not seen in the logistic regression analysis. Even though income may 
not directly impact LCINS, it could potentially influence other factors, 
primarily social determinants of health that affect patients’ lifestyles. 
This includes living in areas with higher levels of air pollution and have 
less access to healthcare, including cancer screening and treatment [29]. 
Studies have also found that people with lower incomes are more likely to 
work in jobs with exposure to harmful substances, such as asbestos and 
radon, which can increase the risk of lung cancer [30]. 

The analysis of the data regarding income and its potential 
association with LCINS reveals a complex picture. When examining a bar 
graph, it seems to suggest that individuals with no LCINS tend to have 
higher incomes (Figure 3A). However, when subjected to more rigorous 
statistical tests, such as the logistic regression model and the ANOVA the 
results indicate that the difference in LCINS incidence among income 
groups is not statistically significant. The data from analysis using logistic 
regression model showed that the incidence of LCINS across income 
groups is comparable (Fig. 3B). Consistently, the ANOVA test revealed that 
the population means of income groups are not statistically different with 

 

Figure 1A: Prediction of association between age and Lung Cancer in Never Smokers (LCINS) incidence.
1A). Linear association of age of the patient and proportion of LCINS.
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Figure 1B: Logistic regression of the probability of LCINS due to age.

Table 2: T-test of age between those with no LCINS and those with LCINS.

Age No History History

Average 71 72.34

Sample Variance 35.03 34.82

Sample Size 31124 5210

t-value 2.57 N/A 

Critical t-value 1.65 N/A 

Table 3A: Student’s t-tests of patients with or without a history of lung 
cancer in never smokers due to A) height, B) body weight, and C) Body 
Mass Index (BMI).

Height No History History

Average 66.02 66.35

Sample Variance 15.63 16.29

Sample Size 31124 5210

t-value 1.37
N/A 

Critical t-value 1.65

A

B

Weight No History History

Average 168.92 170.45

Sample Variance 1299.79 1327.25

Sample Size 31124 5210

t-value 0.08
N/A 

Critical t-value 1.65

C

BMI No History History

Average 27.17 27.14

Sample Variance 25.02 24.46

Sample Size 31124 5210

t-value 0.10 N/A 

Critical t-value 1.65 N/A 

F-value lower that the critical F-value of 2.76 (Table 5).

As a result, there is insufficient statistical evidence to support income 
as a significant factor contributing to LCINS incidence. This underscores 
the importance of relying on robust statistical methods to draw 
meaningful conclusions from data, even when visual trends may initially 
suggest a relationship.

Family History and Secondary Exposure
While smoking is the primary risk factor for lung cancer, accounting 

for the majority of cases [9], there are cases of lung cancer that occur in 
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individuals who have never smoked. The incidence of Lung Cancer in 
Never-Smokers (LCINS) has been documented in various studies [31]. 
Family history can play a significant role in the incidence of lung cancer in 
never-smokers. Furthermore, exposure to secondhand smoke especially  
enclosed spaces, e.g., homes and workplaces, on a regular basis may 
increase the risk of developing lung cancer in never-smokers.

The results of the t-test analysis indicate that there is no statistically 
significant difference in means between patients with a family history of 
LCINS and those without such a history. In other words, the Z-value is 
lower than the critical Z-value of 1.96, suggesting that the presence or 
absence of a family history of LCINS does not lead to a significant variation 
in in the LCINS incidence, as per the statistical analysis (Table 6). These 
findings underscore the importance of exploring other potential factors 

that may be more relevant in understanding the incidence of lung cancer 
within the studied population, as family history alone does not appear to 
be a statistically significant determinant in this context.

For secondary exposure, the results of the ANOVA test have provided 
valuable insights into the relationship between secondary smoke 
exposure and LCINS (Table 7). The test did not produce a sufficiently high 
F-value that surpasses the critical F-value of 3.00 and to reject the null 
hypothesis.. This outcome suggests that, based on the data and analysis 
performed, secondary smoke exposure is not a statistically significant 
factor contributing to LCINS incidence. In other words, there is no strong 
evidence to support the notion that exposure to secondary smoke is a 
significant driver of LCINS incidence within the studied population.

 

       Figure 2A: Lung Cancer in Never Smokers (LCINS) disproportionately affects patients by race.
2A). Bar chart of the proportion of each patient with and without LCINS.

   

1 – White 
2 – Black or African 
American 
3 – Hispanic 
4 – Asian 
5 – Native Hawaiian or 
Other Pacific Islander 
6 – American Indian or 
Alaskan Native 

Figure: Logistic regression model of the predicted probability of LCINS by race. 
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Table 4: Two-sample Z-test of proportions of white population between 
those with no LCINS and those with history of LCINS (A), and ANOVA test 
results indicates statistically significant difference in means among the 
six races (B)*.
A

Race (Caucasian) No History History

Proportion 0.91 0.94

Population size 31124 5210

p pooled 0.92

N/A Z-value 6.01

Critical Z-value 1.96

B

Race Average
Sum of 
Data 
Values

Sample 
Size G/N

Sum of 
Squares 
(total)

White 0.15 4884.00 33276.00 0.14 4434.59

Black 0.11 99.00 887.00
Sum of 
squares 
(within)

Sum of 
squares 
(between)

Hispanic 0.1 28.00 271.00 4430.56 4.03

Asian 0.1 146.00 1448.00
Mean 
squares 
(within)

Mean 
squares 
(between)

Native 
Hawalian or 
other Pacific 
Islandres

0.12 18.00 152.00 0.12 0.81

American 
Indian or 
Alaskan 
Native

0.09 3.00 32.00 F-value Critical 
F-value

  6.57 2.21

DISCUSSION
The comprehensive analysis of the dataset focused on determining the 

factors influencing LCINS patient incidence has yielded crucial insights, 
with age and race emerging as the primary determinants. Across various 
statistical methods employed, age and race consistently demonstrated 
the highest levels of statistical significance. The association between 
increasing age and elevated LCINS incidence indicates a progressive risk 
with advancing age [17]. Additionally, the observation that whites exhibit 
higher rates of LCINS compared to other racial groups underscores the 
importance of considering demographic factors in understanding and 
addressing this health issue.

While age and race surfaced as influential factors, the study also 
examined a spectrum of variables including height, weight, BMI, income, 
family history, and exposure to secondary smoke. However, the evidence 
generated failed to reject the null hypotheses for these factors, suggesting 
that, within the scope of this study, they do not play a significant role 
in LCINS incidence. This nuanced understanding contributes to the 
delineation of factors that demand more attention in future research and 
clinical practice. Meanwhile, other factors, e.g., gender and environmental 
factors including smog, PM2.5, radon that were not included in this study 
would warrant further investigation [32].

The most appropriate statistical model for our data analysis is 
logistic regression, which aligns with the binary nature of the dependent 
variable predicting LCINS incidence in patients. This modeling choice 
enables a deeper elucidation of how independent variables relate to the 
likelihood of LCINS occurrence. Furthermore, the incorporation of t-tests 
and ANOVA tests alongside logistic regression corroborate evidence, 
providing additional layers of validation through t-values and p-values. 

The statistical analysis identified age as an important risk factor 
for occurrence of lung cancer in never-smokers. This aligns with the 
results from previous studies revealing that age significantly impacts the 
incidence of lung cancer [16]. This further indicates the validity of current 
model of statistical analysis. Moreover, the statistical methods employed 
in this study can be applied to other datasets with binary outcomes. 
This expands the potential impact of the research and underscores the 
broader utility of our analytical approach in addressing other health-
related issues and their outcomes. 

The implications stemming from this study hold promising avenues 
for further research and practical applications. It would be a significant 
outcome if a Machine Learning (ML) model can be created for LCINS 
diagnosis, which considers key risk factors and epidemiological elements 
with differing weights. This model could serve as a valuable tool for 
healthcare professionals, enabling them to identify key target populations 
susceptible to LCINS. For example, a preliminary ML model using 
Electronic Health Records (EHR) data also yielded age, race, and ethnicity 
as top predictors of lung cancer, with an additional factor being diagnosis 
of chronic obstructive pulmonary disease [12]. This, in turn, facilitates 
early lung cancer prevention strategies and enhances awareness for 
symptom recognition among high-risk individuals. 

However, there are opportunities for further refinement and 
expansion of this research. The inclusion of additional parameters, 
such as gender, medication history, and environmental factors, could 
unveil additional influential factors affecting LCINS incidence. Assessing 
correlations between independent variables is crucial for uncovering 
potential confounding variables that might impact the observed 
associations.

In future studies, exploring alternative statistical models, like Partial 
Least Squares Regression (PLSR), can offer further detailed insights, 
especially when dealing with myriad factors [33,34]. PLSR has been shown 
to effectively handle large numbers of predictors and multicollinearity 
issues [35], making it a promising approach for complex data analysis. 
The consideration of different platforms, such as SAS [36] and S [37], for 
data management and analysis, may enhance efficiency and facilitate the 
handling of large datasets. 

In addition to comparing LCINS to lung cancer in smokers within the 
PLCO dataset, it may be valuable to compare LCINS to other cancers in 
the PLCO dataset, such as colorectal and ovarian cancer. This comparison 
is particularly relevant because these cancers share similar driver 
mutations in the KRAS and p53 genes [27]. By examining the similarities 
and differences in the incidence, risk factors, and outcomes of these 
cancers, researchers can gain a more comprehensive understanding of 
the underlying molecular mechanisms and potential shared risk factors.

However, the PLCO dataset is not the only relevant database to explore 
when investigating LCINS. Other databases, such as the National Cancer 
Institute’s SEER (Surveillance, Epidemiology, and End Results) Program 
[38] and The Cancer Genome Atlas (TCGA) [39], also collect and publish 
data detailing cancer incidence and survival rates from nationwide health 
registries.

The SEER Program, established in 1973, collects data on cancer 
cases from various locations and sources throughout the United States, 
covering approximately 34.6% of the population [34]. This database 
provides valuable information on cancer incidence, prevalence, survival, 
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Figure 3: There is no conclusive evidence to suggest that income impacts Lung Cancer in Never Smokers (LCINS). 
3A). Bar chart comparing proportions of patient populations in each income bracket.

  

  

1 – $<20,000 

2 – $20,000 - $49,000 

3 – $50,000 - $99,000 

4 – $100,000 - $200,000 

5 – >$200,000 

Figure: Logistic regression model of the predicted probability of LCINS by income. 

Table 5: ANOVA test results indicates no difference in means among the five income brackets*.

Income Average Sum of Data Values Sample Size G/N Sum of Squares (total)

< $20,000 0.15 586.00 4009.00 0.14 3843.63

$20,000 - $49,000 0.14 1947.00 13714.00 Sum of squares 
(within) Sum of squares (between)

$50,000 - 99,000 0.14 1468.00 10216.00 3843.07 0.56

$100,000 - $200,000 0.13 396.00 2940.00 Mean squares 
(within) Mean squares (between)

> $200,000 0.17 87.00 521.00 0.12 0.14

N/A 
F-value Critical F-value

1.14 2.76
 
*Degrees of freedom (between) = 4; degrees of freedom (within) = 31395
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Table 6: Two sample Z-test of family history between those with and those without a history of lung cancer in never smokers

Family History No History History

Proportion 0.13 0.13

Population size 3423 586

p pooled 0.13

 N/AZ-value 0

Critical Z-value 1.96

Table 7: ANOVA test results indicate no difference in means among the three groups of heavy, medium, and no exposure to secondary smoke*.

Secondary Smoke 
Exposure Average Sum of Data Values Sample Size G/N Sum of Squares (total)

1 0.14 2576 18045 0.14 5596.72

2 0.15 1026 6756 Sum of squares 
(within) Sum of squares (between)

3 0.14 2936 20613 5596.22 0.50

N/A 

Mean squared (within) Mean squared (between)

0.12 0.25

F-value Critical F-value

2.01 3.00

*Degrees of freedom (between) = 2; degrees of freedom (within) = 45412

and mortality rates, as well as patient demographics and tumor 
characteristics. By leveraging the SEER database, researchers can conduct 
large-scale epidemiological studies to identify trends and risk factors 
associated with LCINS and compare them to other cancers.

The Cancer Genome Atlas (TCGA) is another comprehensive 
database that can provide insights into LCINS. TCGA is a landmark cancer 
genomics program that has molecularly characterized over 20,000 
primary cancer and matched normal samples spanning 33 cancer types 
[39]. This database generates a vast resource of genomic, epigenomic, 
transcriptomic, and proteomic data, allowing researchers to explore 
the molecular underpinnings of various cancers, including LCINS. By 
comparing the genomic profiles of LCINS to other cancers in the TCGA 
database, researchers can identify common and unique molecular 
alterations that may contribute to the development and progression of 
these diseases.

In summary, while the PLCO dataset provides a valuable resource 
for comparing LCINS to other cancers with shared driver mutations, 
such as colorectal and ovarian cancer, it is essential to explore other 
relevant databases like SEER and TCGA. These databases offer additional 
information on cancer incidence, survival rates, and molecular 
characteristics, enabling researchers to gain a more comprehensive 
understanding of LCINS and its relationship to other cancers.

CONCLUSIONS
In summary, this study not only sheds light on the specific factors 

influencing LCINS incidence but also lays the groundwork for future 
research endeavors. The results contribute to a more precise understanding 
of risk factors, opening avenues for targeted interventions, and the 

broader applicability of the statistical methods ensures the potential for 
advancements in predictive modeling beyond the scope of this study. The 
integration of additional parameters such as genetic background and a 
patient’s measured socioeconomic status and exploration of alternative 
statistical models will undoubtedly contribute to a more comprehensive 
understanding of the complex factors influencing LCINS.
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