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Abstract

Prototypical networks have emerged as an effective approach for few-shot learn- ing, particularly in classifying rare skin diseases,
by leveraging deep neural networks to create a feature space for classifying new, unseen classes. Nev- ertheless, obstacles such as
the inability to fully retain or leverage long-term knowledge and inaccurate prototype estimation due to limited data reduce its ability to
generalize well to new or unseen classes. To overcome these chal- lenges, we introduce GCProNet: Graph-Based Continual Prototypical
Networks, a novel framework aimed at improving few-shot classification of rare skin dis- eases. GCProNet integrates support samples
into the prototype network and captures the relational structure between these samples. The model transfers knowledge across tasks
by adopting a continual learning strategy to improve classification accuracy. Initially, Convolutional Neural Networks extract fea- ture
representations, which are then enhanced by graph-based techniques to capture dependencies among support samples. These graph-
aggregated features are preserved through Gated Recurrent Units (GRUs) to facilitate continuous task learning. The resulting expanded
feature space, enriched by both previous task knowledge and relational dependencies, is subsequently utilized within the Prototypical
Network to generate more precise class prototypes, particularly for challenging new and rare classes. Experimental results demonstrate
that GCProNet surpasses existing models, achieving 80.5% accuracy on the ISIC 2018 dataset, 86.12% on the Derm7pt dataset, and
92.63% on the SD-198 dataset under 5-shot learning conditions. These results demonstrate the strong potential of GCProNet in enhancing

skin disease classification when data availability is limited.

INTRODUCTION

Significant progress in deep learning has greatly impacted the
healthcare sector, particularly in medical image analysis. These
techniques have demonstrated substantial promise in automating the
diagnostic process from medical images, enhancing the precision and
speed of multiple diagnostic tasks. Despite this, dermatology continues to
pose challenges for deep learning models, primarily due to the vast diversity
of skin conditions, especially rare ones, and the restricted availability of
annotated datasets for less prevalent diseases, as illustrated in Figure
1. Furthermore, the manual annotation of medical images is a labor-
intensive task prone to inaccuracies, making it challenging to produce
the large annotated datasets necessary to train effective models for skin
disease classification. These obstacles limit the successful application of
deep learning in dermatology, particularly in few-shot learning scenarios
where only a small number of labeled samples are available. Few-shot
learning (FSL) has emerged as a viable solution to overcome the problem
of scarce labeled data. Metric-based FSL models, such as Prototypical
Networks (ProtoNets) [4], have shown considerable success in medical
diagnostics by learning from a small number of labeled samples and
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generalizing effectively. In dermatology, the Meta-DD [5], model applied
meta-learning to tackle the issue of limited data and class imbalance,
while the MetaDerm [6], model addressed the difficulty of diagnosing
rare diseases with limited annotated images. The SCAN algorithm
[7], further improved FSL for skin disease classification by capturing
intra-class variations through sub-clustered representations. While
these methods have made strides, they still face substantial challenges
related to data scarcity, inaccurate prototype estimations, and bias
towards overrepresented classes, which restrict their capacity to classify
a wide variety of skin diseases effectively. To resolve these limitations, we
introduce GCProNet, a novel hybrid Prototypical Network integrating
Graph Neural Networks (GNNs) for relational feature modeling and
Gated Recurrent Units (GRUs) for continual knowledge adaptation. By
modeling feature vectors as graph nodes and encoding their interrelations
as edges, GCProNet effectively cap- tures rich contextual dependencies to
enhance prototype representations. The incorporation of GRUs mitigates
catastrophic forgetting, facilitating robust knowledge retention across
tasks and improving generalization to novel skin disease categories.
Extensive evaluation on benchmark datasets—SD- 198, Derm7pt, and
ISIC 2018—demonstrates that GCProNet surpasses state-of-the-art
methods, establishing itas a scalable and effective framework for few-shot
dermatological classification. Our core contributions are:

1. We introduce GCProNet, an advanced architecture that
reformulates the prototypical network to resolve critical few-shot
dermatological classification challenges—data scarcity and cross- task
catastrophic forgetting—through synergistic integration of graph
relational modeling and recurrent knowledge preservation.

2. GCProNet integrates CNNs, GNNs, and GRUs to model
contextual dependencies and retain task knowledge, to enrich the feature
space, and to provide a more robust class representation.

3. GCProNet achieves  state-of-the-art performance on
dermatological benchmarks (ISIC 2018 [1], Derm7pt [2], SD-198 [3]), with
significant accuracy gains demonstrating efficacy for few-shot diagnostic
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Figure 1: Skin disease datasets ISIC 2018 [1], Derm7pt [2], and SD-198[3] exhibit long-tail distributions. Models train on head classes (common
diseases, red) and test on scarce tail classes (rare diseases, blue), creating a significant few-shot learning challenges.

RELATED WORKS

Few-shot Learning FSL

Few-shot learning (FSL) is a powerful approach for classifying
new categories with limited labeled examples, leveraging knowledge
from base classes to generalize to novel ones. FSL methods are broadly
categorized into meta-gradient learning, metric-based approaches,
and graph neural networks (GNNs), each offering unique advantages
for training with limited data. Meta-gradient Learning: This approach
optimizes model parameters through gradient-based methods tailored to
specific tasks. Methods like Meta-LSTM [8], use Long Short-Term Memory
networks to adapt model parameters for efficient learning, while MAML
[9], learns optimal initial parameters through Stochastic Gradient
Descent (SGD), applicable across supervised and reinforcement learning.
Reptile [10], simplifies MAML using first-order gradients, and SNAIL
[11], integrates temporal convolutions and attention mechanisms for
dynamic task adaptation. Metric-based Methods: These methods classify
based on feature vectors and distance metrics. Siamese networks [12],
measure similarity between samples, while Prototypical Networks
[1], generate class prototypes by averaging feature vectors and classify
based on distance to these prototypes. The Relation Network [13], learns
optimal similarity metrics for query-support comparisons. Graph Neural
Networks (GNNs): GNNs capture relationships in graph- structured data,
enhancing FSL performance. Early work [14] used GNNs to classify
query samples by updating node information in a graph structure. TPN
[15], introduced a transductive method using top-k graphs for label
propagation from support to query sets. Later work [16] improved these
models by integrating prototype-based label propagation. SPNP [17] and
EGNN [18] incorporated structural graph information to tackle challenges
like catastrophic forgetting and generalization, while Bayesian GNNs
[19] enabled continual learning and task adaptation. Building on these
methods, we propose GCProNet combines Graph Neural Networks and
Gated Recurrent Units to enhance prototype generation and preserve task
knowledge, achieving robust few-shot classification for skin diseases. This
hybrid approach leverages relational reasoning and knowledge retention
to improve dermatological classification performance.

FSL for SKkin Disease Classification

Few-shot learning (FSL) for skin disease classification leverages
transfer learning and meta-learning techniques to improve performance
with limited data. Meta-learning approaches, such as gradient- based
[20,21], and metric-based methods [5,6], have shown strong results. In
transfer learning, Dai et al. [22], introduced a dual-encoder architecture
that integrates large and small-scale datasets for better feature extraction
in medical tasks. Xiao et al. [23], proposed a multitask framework with
contrastive learning to enhance prototype networks for skin disease
classification. Prabhu et al. [24], improved Prototypical Networks with a

clustering approach for multiple prototypes per disease class, though it
requires predefined sub-clusters. Shuhan Li et al. [7], introduced dynamic
sub-clustering for more flexible feature encoding, especially for rare
conditions. Self-supervised learning techniques [25,26], further enhance
FSL models by utilizing unlabeled data. In gradient-based meta-learning,
Li et al. [20], improved MAML with Difficulty-Aware Meta-Learning
(DAML) to adapt to task complexity, while Singh et al. [21], enhanced the
Reptile model with regularization techniques for better performance. For
metric-based methods, Mahajan et al. [5], integrated group-equivariant
convolutions into Prototypical Networks, enabling better feature invariance
fordermatology. Desingu Kar etal. [6], proposed a meta-training technique
for dermoscopic images, improving feature embedding for rare diseases.

GCProNet enhances Prototypical Networks by integrating Graph
Neural Networks (GNNs) and memory units, addressing the challenges of
few-shot skin disease classification. By capturing relational dependencies
between support samples and incorporating continual learning,
GCProNet improves prototype accuracy and generalization, especially for
rare dermatological conditions.

METHODOLOGY

Problem Definition

Severe data scarcity—particularly for rare dermatological
pathologies—poses fundamental challenges for classification, necessitating
models that generalize to novel categories under minimal supervision.
Formally, we define mutually exclusive datasets: a training dataset D
for model learning and a testing dataset D
(D,

train

s CONtaining novel classes
ND__ = @). Within the N -way K-shot framework, a support set

train test

§ = {(I'e=i‘Ji)}i\—);h provides limited supervision, while a
query set Q = {(a;,y;)}M, (unseen during training) evaluates
generalization. The core challenge is leveraging S ¢ D to accurately
classify novel dermatological categories in D, given only K exemplars
per class. The GCProNet model addresses this by expanding the feature
space with graph-based methods that capture relational dependencies
and enhancing feature extraction through CNNs. Additionally, GCProNet
employs continual learning to preserve and transfer knowledge across
tasks, improving its ability to classify skin diseases from limited training
data.

The Model

GCProNet integrates graph-convolutional feature enhancement with
prototypical networks to advance few-shot dermatological classification.
As shown in Figure 2 and 3, our architecture overcomes traditional
limitations through relational context modeling and flexible knowledge
transfer.

Feature Extraction: GCProNet employs a CNN embedding backbone
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Figure 2: GCProNet architecture for few-shot dermatological diagnosis. In 3-way 2-shot tasks, a CNN backbone extracts dermoscopic features,
dynamically aggregated via graph-structured propaga- tion (edge-learned relationships) and fused with GRU-stabilized embeddings. Optimized
prototypes P, P,, P, enable metric-based classification, addressing data scarcity through graph-guided knowl- edge transfer
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Figure 3: GCProNet integrates prototypical networks with GCN-based feature propagation and GRU-gated knowledge preservation for continual

[27], for discriminative feature extraction, utilizing architectures such as
Conv4, Conv6, or Wide ResNet (WRN) to extract discriminative features
from dermatological support and query images, formally defined in
Equation 1:

f(x;) = CNN(x;:6)
&

In this context, flai) is the feature vector for the input image xi,
while 6 denotes the learnable parameters of the CNN. The architecture
typically consists of convolutional layers to capture spatial information,
blending layers to reduce dimensionality and improve generalization, and
fully connected layers that combine the extracted features into the final

representation J(2) This feature vector effectively encodes the critical
visual attributes of skin diseases, such as texture, shape, and pattern,
which are essential for subsequent classification tasks. In particular,
the quality and precision of the extracted features have a direct bearing
on the success of subsequent graph-based feature enhancement and
the classification process within the Prototypical Network framework.
Consequently, GCProNet’s overall performance relies heavily on CNN’s
ability to extract high-quality, discriminative features that accurately
capture the disease characteristics.

Graph Construction and Continual Knowledge Transfer: Following
the extraction of features using CNN, the next step involves constructing
a graph from the representations of the characteristics of the support set.
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This begins with the formation of an adjacency matrix A, which enables
the integration of characteristics and the relationships between models.
This aggregation enhances the feature vectors, strengthening their
representational capacity and robustness for downstream tasks.

Graph Construction: Support image feature vectors, represented

as A= {:1;1!3:21 “oor T gerve as graph nodes, with each node

corresponding to f(x:) The adjacency matrix A encodes the pairwise
relationships between these nodes, where each element A, measures
the similarity between the nodes i and j. The specific formulation of this
similarity is provided in Equation 2:

Ajj = Similarity(f(x;), f(=x;)) 2
(), fa)
= exp(- L J5)),

where d(:,-) denotes a distance metric, typically the Euclidean
distance, employed to evaluate similarity between feature vectors
(f(w:), f(%;)) via a Gaussian kernel. The parameter o2 serves as a scaling
factor, consistent with methodologies such as embedding propagation
[28], and TPN [15].

Feature Aggregation: The model applies the feature aggregation
function Jess(#i) to each node after the graph has been established.
This process is implemented through the utilization of graph based
neural network techniques, specifically graph-convolutional networks
(GCNs) [29]. Equation 3 mathematically describes the aggregation of
characteristics:

41,y _ A—1/2 3 A=1/2 pr \l1ar
@) =0 (D AD™V2 f ()W ) @
where A=A+1Iy denotes the adjacency matrix with self-loops, "D

is its corresponding degree matrix, W the learnable weight matrix, and
o a non-linear activation (e.g., ReLU). After two propagation layers, node
embeddings incorporate multi-hop neighborhood context, synthesizing
localized patterns and global structural relationships into discriminative
representations.

Continual Knowledge Transfer via GRU Memory Units: After
aggregating graph-based features, GCProNet employs Gated Recurrent
Units (GRUs) [30], to enable effective knowledge transfer across tasks,
addressing the issue of catastrophic forgetting in sequential few-shot
dermatological classification, as illustrated in Figure 3. GRUs accomplish
this by employing two adaptive gating mechanisms: 1. Update Gate
(z,): Controls the retention of the previous hidden state h,_, thereby
preserving long-term dependencies that are critical for maintaining
inter-task feature consistency. 2. Reset Gate (r,): Manages the integration
of historical context into the current candidate state h't, enabling the
model to discard obsolete patterns and incorporate novel lesion classes
effectively. The dynamics of the GRU are governed by the following set of
equations:

o(Welhi—1; fage(xi)]),

o(Wilht—1; fage(:)]), 4)
h, = tanh(Wy[ry © hy 13 fage(21)]),

h’t = (]. - Zt) © hft_]_ + 2 @ }N?/t,

Zt

Tt

where [; ] denotes vector concatenation, (O represents element-

wise multiplication, and f, gg(x,.) € R refers to the graph-refined feature

representation from task t. The learnable parameters W, W, and W, are

meta-optimized to balance the contributions of historical knowledge

h,_, and incoming task embeddings f, (x), and o denotes the sigmoid
gg ™ I

activation function. By iteratively refining h, the GRUs construct a

dynamically evolving feature space that retains critical dermatological
patterns (such as lesion texture and border irregularity) across tasks. This
process effectively prevents feature degradation when incrementally
learning rare classes with fewer than or equal to five samples. The
final GRU-enhanced embeddings h, are subsequently propagated to the
prototypical network, where they stabilize the prototype computation by
ensuring both inter-class separability and intra-class compactness—key
characteristics for robust few-shot classification.

Feature Space Expansion: GCProNet’s architecture systematically
expands the feature space of the support set, facilitating richer and
more discriminative representations essential for accurate skin disease
classification. This enhanced representation results from the fusion
of CNN-extracted features, refined through graph-based methods and
sequentially encoded using Gated Recurrent Units (GRUs), mathematically
formulated as follows:

Jeap(xi) = fa;) + hy (5)

Here, fezp(%1) denotes the expanded feature vector for each image x,
integrating the initial CNN features rt'r“"'i with the feature enhancements
provided by the GRU h,. Unlike conventional prototype networks
that rely on simple feature averaging, GCProNet integrates individual
features with their contextual interrelations within the support set,
substantially enhancing classification accuracy. This approach is
especially advantageous in few-shot learning, where limited data
necessitates leveraging both local and global feature contexts to maximize
performance and generalizability.

Prototypical Network and Loss Optimization: In the GCProNet
framework, the Prototypical Network [4-31], utilizes the enriched feature
space to generate class prototypes, each defined as the mean vector of
expanded support set features for class c¢. These prototypes serve as
representative centroids crucial for accurate classification, as follows:

N,
1 (6)
Pc = E Zlfexp(mi)

where N_denotes the number of samples in class ¢, and fgxp(XJ
represents the enriched feature vectors of i, the sample. For the query
images, feature vectors are extracted via the CNN, ensuring distinct
representations for comparison. These query features are then evaluated
against the class prototypes within the expanded feature space, employing
the Euclidean distance to quantify similarity. The distance between the
feature vector of query image q; and prototype P is defined as:

™
djc = [|f(g;) = Pell

This distance metric forms the basis of the classification decision,
where the class assigned to each query corresponds to the nearest
prototype. To express this decision probabilistically, a softmax function
is applied over the negative distances, yielding a probability distribution
over all classes:

e—dic (8)

%) = 3 —dsn
k=1¢

Prob(y =¢

Model training is guided by the cross-entropy loss, computed as:

9

C
L(g;) = — Z}l‘(yj =¢)log Prob(y = ¢| ¢;)

c=1
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Figure 4: Sample images illustrating skin lesions from diverse datasets: (a) ISIC 2018 dataset, (b) Derm7pt dataset (clinical and dermoscopic

images), and (c) SD-198 dataset.

where %() denotes the indicator function, equal to 1 when the true
label of gisc, and 0 otherwise. By employing this enhanced methodology
within the Prototypical Network, underpinned by an improved feature
space, GCProNet significantly enhances its ability to accurately classify
skin diseases, especially in few-shot learning scenarios.

EXPERIMENTS

To evaluate GCProNet, we conducted experiments on two widely
recognized benchmark datasets: ISIC-2018 [1] and Derm7pt [2]. These
collections, which comprise a diverse array of dermatological images,
serve as critical resources for assessing and enhancing the model’s
capability in skin lesion classification.

Datasets

ISIC-2018 dataset: The ISIC-18 [1], comprises 10,015 dermoscopic
images of skin lesions, classified into seven categories. For training,
four classes (9,431 images) were used, while three classes (584 images)
served as the test set. To ensure computational efficiency, all images
were resized from 600x450 to 224x224 pixels. For few-shot learning
experiments, four classes were designated for meta-training, and three
classes were used for meta-testing, capturing the complexity inherent in
clinical skin lesion diagnosis. Representative samples from the dataset
are illustrated in Figure 4(a).

Derm7pt Dataset: The Derm7pt dataset [2] contains over 2,000 clinical
and dermoscopic images across 20 lesion categories. After resizing
from 768x512 to 224x224 pixels, standard augmentations (cropping,
rotation, and flipping) were applied. Excluding the “miscellaneous” and
“melanoma” classes due to insufficient samples, 18 categories were
divided into 13 training and 5 testing classes. The dataset was further
splitinto a base set (1,892 images, 40-698 per class) and a novel set (114
images, 10-34 per class), reflecting real-world data scarcity challenges. as
illustrated in Figure 4(b).

SD-198 Dataset: The SD-198 dataset [3] comprises 6,584 clinical images
spanning 198 dermato logical conditions. Images were resized from 1640
x 1130 to 224 x 224 pixels for experimental consistency. For evaluation,
we tested 70 rare-disease classes (< 20 images/class), while 20 classes
(60 images/class) were used for training, ensuring a fair assessment
under limited-data conditions. Representative sample images from the
dataset are illustrated in Figure 4(c).

Implementation Details

Network Architecture: The proposed framework combines three
embedding architectures: Conv4, Conv6, and Wide ResNet (WRN-28-
10) [32]. Conv4 and Convé6 are shallow CNNs with 4 and 6 convolutional
layers, respectively, each utilizing 64 kernels (3x3), ReLU activation,
batch normalization [33], and 2x2 max-pooling. The deeper WRN-28-10
features 28-layer residual blocks with a widening factor of 10, improving

gradient flow and feature representation. A graph neural network (GNN)
with two graph convolutional layers processes adjacency matrices to
aggregate node-level features, capturing relational patterns vital for few-
shot classification. Gated Recurrent Units (GRUs) [30], consolidate cross-
task knowledge, enhancing model generalization across diverse few-shot
tasks.

Experimental Settings: The model was implemented in PyTorch and
trained on an NVIDIA A100- SXM4-40GB GPU. We followed standard few-
shot learning protocols for the ISIC-2018, Derm7pt, and SD-198 datasets.
For ISIC-2018, we used 2-way 1/3/5-shot configurations, while Derm7pt
and SD-198 employed 2-way 1/5-shot setups. Each episode sampled 5
query images, and performance was assessed using query-set accuracy
and macro-F1 scores. Training followed the N-way K-shot episodic
paradigm, with the Adam optimizer [43], a learning rate of 107, and
weight decay of 1073. The models were trained for 1000 epochs on ISIC-
2018, 1500 epochs on Derm7pt, and 2000 epochs on SD-198 to ensure
sufficient adaptation to each dataset’s challenges.

Experimental Analysis

We assess GCProNet on ISIC-2018 [1], Derm7pt [2], and SD-198
[3] under 1/3/5-shot settings. It couples a GNN for relational reasoning
over the support set with a GRU-based memory for continual retention,
mitigating prototype bias and catastrophic forgetting.

Result on the ISIC-18 dataset, as shown in Table 1, GCProNet
achieved 80.5% accuracy and 83.2% AUC in the 5-shot configuration,
significantly surpassing baseline models like MetaDerm [6], (73.1%
accuracy) and PCN [24], (73.0% accuracy). In the 1-shot configuration,
GCProNet demonstrated robust generalization with 67.3% accuracy,
outperforming Meta-DD [5], (59.3%) and MetaDerm (58.9%). This
superior performance is attributed to the model’s GNN-driven relational
aggregation and GRU-powered continual knowledge transfer, which
mitigate common issues in rare dermatological datasets [7-24].

On the Derm7pt dataset, which includes clinically annotated
dermoscopic images as shown in Table 2, GCProNet excelled at inferring
diagnostic patterns, such as pigment networks and vascular structures.
Using the WRN-28-10 backbone, GCProNet achieved 86.12% accuracy
in the 5-shot configuration, outperforming SCAN [7] (82.57%) and
MetaDerm (67.0%). In the 1-shot configuration, GCProNet reached
68.19% accuracy, surpassing SCAN (62.80%) [7]. The hybrid architecture
of GCProNet, which integrates CNNs for localized feature extraction, GNNs
for relational aggregation, and GRUs for continual knowledge retention,
enabled it to significantly outperform baseline models. Notably, GCProNet
improved F1-scores by 2.2-4.3% over MetaDerm and Multi-task [34],
demonstrating better precision-recall trade-offs, which are crucial in
medical diagnostics.

For the SD-198 dataset as shown in Table 3, which spans 198 skin
diseases, GCProNet achieved a 5-shot accuracy of 92.63% and 1-shot
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Table 1: Average accuracy and area under the curve (AUC) for 2-way 1/3/5-shot on ISIC-18 with a Conv6 backbone.

Model Backbone Metric 1-shot 3-shot 5-shot
v | wema | s o
Avg. 58.9% 68.3% 73.1%
MetaDerm [3] Avg. Accuracy AUC 69.1% 72.3% 80.6%
Multi-task [32] Convé Avg. Accuracy AUC 62.7% 73.1% 77.6%
Avg. — — _
MTDD [33] ﬁiﬁﬁ Accuracy AUC 605% 69.-8% 763%
Avg. Accuracy 67.3% 75.8% 80.5%
GCProNet Convé
Avg. AUC 69.6% 79.6% 83.2%
Table 2: Results on Derm7pt: GCProNet vs. baselines under 2-way 1-shot and 2-way 5-shot; reported as F1 and accuracy
2-way 1-shot 2-way 5-shot
Method Backbone
Accuracy F1-score Accuracy F1-score
PCN [24] 59.98% 58.54% 70.62% 71.85%
SCAN [7] Conv4 61.42% 61.90% 72.58% 74.05%
GCProNet 63.13% 63.08% 74.25% 74.90%
Meta-DD [5] 61.8% — 76.9% —
MetaDerm [6] 62.3% — 67.0% —
SCAN [7] 62.80% 63.75% 76.65% 73.60%
CDD-Net [35] Conv6 59.46% — 73.78% —
Multi-task [33] 62.70% — 77.83% —
MTDD [34] 63.35% 63.98% 75.61% 76.11%
GCProNet 68.19% 67.36% 77.65% 77.02%
NCA [36] 56.32% 56.41% 67.18% 68.13%
Baseline [37] 59.43% 59.61% 74.28% 75.26%
S2M2-R [38] 61.37% 61.52% 79.83% 80.69%
NegMargin [39] 58.00% 57.50% 70.12% 71.07%
PT+NCM [40] WRN-28-10 60.92% 61.12% 74.33% 74.96%
BEM E-NCM [41] 60.40% 60.57% 72.63% 73.01%
EASY [42] 61.02% 61.25% 75.98% 76.43%
SCAN [7] 66.75% 67.71% 82.57% 83.73%
GCProNet 70.08% 68.77% 86.12% 85.96%
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Table 3: Results on SD-198: GCProNet vs. baselines under 2-way 1-shot and 2-way 5-shot; reported as F1 and accuracy.

2-way 1-shot 2-way 5-shot
Method Backbone
Accuracy F1-score Accuracy F1-score
PCN [24] 70.03% 70.78% 84.95% 85.87%
SCAN [7] Conv4 77.12% 78.00% 90.22% 91.01%
GCProNet 77.89% 77.51% 86.05% 85.82%
Meta-DD [5] 65.3% - 83.7% -
SCAN [7] Convé 76.75% 77.64% 87.45% 88.28%
GCProNet 77.30% 77.84% 87.60% 87.38%
NCA[37] 71.27% 71.27% 83.30% 84.23%
Baseline [38] 75.72% 76.64% 88.95% 84.23%
S2M2-R [39] 76.42% 77.51% 90.32% 90.97%
NegMargin [40] 76.85% 77.98% 89.92% 90.65%
PT+NCM [41] WRN-28-10 78.25% 78.86% 90.33% 90.90%
BEM E-NCM [42] 78.32% 78.70% 90.48% 90.94%
EASY [43] 78.80% 79.44% 90.87% 91.43%
SCAN [7] 80.20% 81.21% 91.48% 92.08%
GCProNet 80.23% 79.98% 92.63% 92.48%

accuracy of 80.23% using the WRN-28-10 backbone, surpassing SCAN
(91.48%) and EASY [41] (90.87%). The GRU component played a
critical role in reducing forgetting rates, ensuring that GCProNet retained
discriminative features across sequential tasks. However, when using
the Conv4 backbone, GCProNet underperformed compared to SCAN in
the 5-shot setting (86.05% vs. 90.22%), suggesting that lightweight
backbones may not fully leverage relational dependencies without further
optimization. This highlights the need for task-specific adaptations in
graph-based learning to handle more complex feature spaces [40-42].
Finally, GCProNet represents a significant advancement in few-shot
learning for dermatology, combining graph-based relational learning with
continual knowledge retention. Itaddresses key challenges in rare disease
classification, including sparse data, intra-class variability, and evolving
diagnostic criteria [20,21]. As shown in Figure 5, the experimental results
consistently highlight GCProNet’s superior performance compared to
baseline methods across all evaluated datasets.

This demonstrates GCProNet's robust few-shot generalization,
enabling clinical deployment in resource-limited settings with scarce
data.

Ablation studies

ComponentAnalysis: The study highlights the criticalimpactofindividual
GCProNet components on dermatopathological classification. Removing
the graph-based module (Prototype w/o Graph) led to performance drops
across all datasets, particularly in the 1-shot case (ISIC-2018 accuracy
reduced from 67.3% to 62.8%). Similarly, eliminating prototype learning
(Graph w/o Prototype) further decreased accuracy, underlining the
importance of relational dependencies for effective generalization. The
exclusion of Gated Recurrent Units (GRUs) (GProNet w/o GRU) resulted
in a notable performance decline, especially in the 5-shot scenario
(ISIC-2018 accuracy fell from 80.5% to 77.46%), demonstrating GRUs’
role in preserving and transferring knowledge to prevent catastrophic
forgetting. In contrast, integrating all components into the full GCProNet
model significantly improved results: 80.5% accuracy on ISIC-2018
(5-shot), 77.65% on Derm7pt, and 87.60% on SD-198. These findings
underscore the synergy of graph-based relational learning, prototype-
based classification, and GRUs in addressing the challenges of sparse data,
intra-class variability, and long-term knowledge retention.

Grad-CAM for Enhanced Feature Interpretation in GCProNet:
Gradient-weighted Class Activation Mapping (Grad-CAM) is a powerful
method for visualizing the regions within an image thatare mostinfluential
in a model’s decision-making process. In the case of GCProNet, Grad-
CAM generates heatmaps that are overlaid on the input images, visually
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Figure 5: Comparative evaluation of GCProNet against baseline methods on three dermatology datasets (ISIC 2018, Derm7pt, and SD-158) under

a 5-shot learning setting..
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Figure 6: Grad-CAM visualization applied to GCProNet for skin disease classification. The heatmaps highlight the most relevant regions of the input
images, demonstrating the areas of the image that contribute most significantly to the model’s classification decision.

Table 4: Ablation study comparing GCProNet'’s effectiveness in 2-way few-shot learning tasks, employing a Convé backbone across the ISIC-2018,

Derm?7pt, and SD-198 datasets

ISIC-2018 Derm7pt SD-198
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
62.8% 74.1% 62.5% 66.9% 69.7% 74.50%
_Prototype w/o Graph
55.3% 73.6% 58.2% 64.6% 67.2% 71.78%
Graph w/o Prototype GProNetw/o
GRU

63.02% 77.46% 64.43% 71.83% 73.25% 82.56%

Integrated
67.3% 80.5% 68.19% 77.65% 77.30% 87.60.%

(GCProNet)

representing the areas that contribute most to the classification outcome.
This technique provides enhanced transparency, which is essential in the
medical field, where the interpretability of automated systems is critical.
By identifying the key features that drive model predictions, Grad-CAM
strengthens the reliability and trustworthiness of GCProNet, enabling
clinical validation and offering evidence-based insights into the model’s
performance. As illustrated in Figure 6, this visualization fosters greater
understanding and confidence in the automated classification of skin
diseases.

Limitations and Future work: Despite strong few-shot performance
in dermatological image classification, GCProNet remains sensitive to
extreme class imbalance and pronounced intra-class variability. Future
work will improve robustness to severe imbalance, advance relational
modeling, and incorporate domain knowledge (e.g., lesion context and
multi-modal cues) to further enhance generalization.

CONCLUSION

GCProNet overcomes ProtoNets’ limitations through graph-relational
reasoning and continual adaptation for data-scarce dermatological

classification. By integrating a graph-based framework to capture
relational dependencies among support samples and incorporating Gated
Recurrent Units (GRUs) for knowledge retention, GCProNet significantly
enhances both the accuracy and stability of dermatological diagnosis,
particularly for rare skin conditions. Extensive evaluations on the Derm7pt,
SD-198, and ISIC 2018 datasets demonstrate substantial improvements
in classification performance, highlighting GCProNet’s ability to overcome
challenges such as data scarcity and prototype inaccura- cies. GCProNet sets
anew benchmark for few-shot learning in medical applications, paving the
way for more reliable diagnostic tools in dermatology and beyond.
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