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Abstract

Prototypical networks have emerged as an effective approach for few-shot learn- ing, particularly in classifying rare skin diseases, 
by leveraging deep neural networks to create a feature space for classifying new, unseen classes. Nev- ertheless, obstacles such as 
the inability to fully retain or leverage long-term knowledge and inaccurate prototype estimation due to limited data reduce its ability to 
generalize well to new or unseen classes. To overcome these chal- lenges, we introduce GCProNet: Graph-Based Continual Prototypical 
Networks, a novel framework aimed at improving few-shot classification of rare skin dis- eases. GCProNet integrates support samples 
into the prototype network and captures the relational structure between these samples. The model transfers knowledge across tasks 
by adopting a continual learning strategy to improve classification accuracy. Initially, Convolutional Neural Networks extract fea- ture 
representations, which are then enhanced by graph-based techniques to capture dependencies among support samples. These graph-
aggregated features are preserved through Gated Recurrent Units (GRUs) to facilitate continuous task learning. The resulting expanded 
feature space, enriched by both previous task knowledge and relational dependencies, is subsequently utilized within the Prototypical 
Network to generate more precise class prototypes, particularly for challenging new and rare classes. Experimental results demonstrate 
that GCProNet surpasses existing models, achieving 80.5% accuracy on the ISIC 2018 dataset, 86.12% on the Derm7pt dataset, and 
92.63% on the SD-198 dataset under 5-shot learning conditions. These results demonstrate the strong potential of GCProNet in enhancing 
skin disease classification when data availability is limited.

Original Article ©  Noman A, Beiji Z, et al. 2025

INTRODUCTION

Significant progress in deep learning has greatly impacted the 
healthcare sector, particularly in medical image analysis. These 
techniques have demonstrated substantial promise in automating the 
diagnostic process from medical images, enhancing the precision and 
speed of multiple diagnostic tasks. Despite this, dermatology continues to 
pose challenges for deep learning models, primarily due to the vast diversity 
of skin conditions, especially rare ones, and the restricted availability of 
annotated datasets for less prevalent diseases, as illustrated in Figure 
1. Furthermore, the manual annotation of medical images is a labor-
intensive task prone to inaccuracies, making it challenging to produce 
the large annotated datasets necessary to train effective models for skin 
disease classification. These obstacles limit the successful application of 
deep learning in dermatology, particularly in few-shot learning scenarios 
where only a small number of labeled samples are available. Few-shot 
learning (FSL) has emerged as a viable solution to overcome the problem 
of scarce labeled data. Metric-based FSL models, such as Prototypical 
Networks (ProtoNets) [4], have shown considerable success in medical 
diagnostics by learning from a small number of labeled samples and 

generalizing effectively. In dermatology, the Meta-DD [5], model applied 
meta-learning to tackle the issue of limited data and class imbalance, 
while the MetaDerm [6], model addressed the difficulty of diagnosing 
rare diseases with limited annotated images. The SCAN algorithm 
[7], further improved FSL for skin disease classification by capturing 
intra-class variations through sub-clustered representations. While 
these methods have made strides, they still face substantial challenges 
related to data scarcity, inaccurate prototype estimations, and bias 
towards overrepresented classes, which restrict their capacity to classify 
a wide variety of skin diseases effectively. To resolve these limitations, we 
introduce GCProNet, a novel hybrid Prototypical Network integrating 
Graph Neural Networks (GNNs) for relational feature modeling and 
Gated Recurrent Units (GRUs) for continual knowledge adaptation. By 
modeling feature vectors as graph nodes and encoding their interrelations 
as edges, GCProNet effectively cap- tures rich contextual dependencies to 
enhance prototype representations. The incorporation of GRUs mitigates 
catastrophic forgetting, facilitating robust knowledge retention across 
tasks and improving generalization to novel skin disease categories. 
Extensive evaluation on benchmark datasets—SD- 198, Derm7pt, and 
ISIC 2018—demonstrates that GCProNet surpasses state-of-the-art 
methods, establishing it as a scalable and effective framework for few-shot 
dermatological classification. Our core contributions are:

1.	 We introduce GCProNet, an advanced architecture that 
reformulates the prototypical network to resolve critical few-shot 
dermatological classification challenges—data scarcity and cross- task 
catastrophic forgetting—through synergistic integration of graph 
relational modeling and recurrent knowledge preservation.

2.	 GCProNet integrates CNNs, GNNs, and GRUs to model 
contextual dependencies and retain task knowledge, to enrich the feature 
space, and to provide a more robust class representation.

3.	 GCProNet achieves state-of-the-art performance on 
dermatological benchmarks (ISIC 2018 [1], Derm7pt [2], SD-198 [3]), with 
significant accuracy gains demonstrating efficacy for few-shot diagnostic 
applications.
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RELATED WORKS

Few-shot Learning FSL

Few-shot learning (FSL) is a powerful approach for classifying 
new categories with limited labeled examples, leveraging knowledge 
from base classes to generalize to novel ones. FSL methods are broadly 
categorized into meta-gradient learning, metric-based approaches, 
and graph neural networks (GNNs), each offering unique advantages 
for training with limited data. Meta-gradient Learning: This approach 
optimizes model parameters through gradient-based methods tailored to 
specific tasks. Methods like Meta-LSTM [8], use Long Short-Term Memory 
networks to adapt model parameters for efficient learning, while MAML 
[9], learns optimal initial parameters through Stochastic Gradient 
Descent (SGD), applicable across supervised and reinforcement learning. 
Reptile [10], simplifies MAML using first-order gradients, and SNAIL 
[11], integrates temporal convolutions and attention mechanisms for 
dynamic task adaptation. Metric-based Methods: These methods classify 
based on feature vectors and distance metrics. Siamese networks [12], 
measure similarity between samples, while Prototypical Networks 
[1], generate class prototypes by averaging feature vectors and classify 
based on distance to these prototypes. The Relation Network [13], learns 
optimal similarity metrics for query-support comparisons. Graph Neural 
Networks (GNNs): GNNs capture relationships in graph- structured data, 
enhancing FSL performance. Early work [14] used GNNs to classify 
query samples by updating node information in a graph structure. TPN 
[15], introduced a transductive method using top-k graphs for label 
propagation from support to query sets. Later work [16] improved these 
models by integrating prototype-based label propagation. SPNP [17] and 
EGNN [18] incorporated structural graph information to tackle challenges 
like catastrophic forgetting and generalization, while Bayesian GNNs 
[19] enabled continual learning and task adaptation. Building on these 
methods, we propose GCProNet combines Graph Neural Networks and 
Gated Recurrent Units to enhance prototype generation and preserve task 
knowledge, achieving robust few-shot classification for skin diseases. This 
hybrid approach leverages relational reasoning and knowledge retention 
to improve dermatological classification performance.

FSL for Skin Disease Classification

Few-shot learning (FSL) for skin disease classification leverages 
transfer learning and meta-learning techniques to improve performance 
with limited data. Meta-learning approaches, such as gradient- based 
[20,21], and metric-based methods [5,6], have shown strong results. In 
transfer learning, Dai et al. [22], introduced a dual-encoder architecture 
that integrates large and small-scale datasets for better feature extraction 
in medical tasks. Xiao et al. [23], proposed a multitask framework with 
contrastive learning to enhance prototype networks for skin disease 
classification. Prabhu et al. [24], improved Prototypical Networks with a 

clustering approach for multiple prototypes per disease class, though it 
requires predefined sub-clusters. Shuhan Li et al. [7], introduced dynamic 
sub-clustering for more flexible feature encoding, especially for rare 
conditions. Self-supervised learning techniques [25,26], further enhance 
FSL models by utilizing unlabeled data. In gradient-based meta-learning, 
Li et al. [20], improved MAML with Difficulty-Aware Meta-Learning 
(DAML) to adapt to task complexity, while Singh et al. [21], enhanced the 
Reptile model with regularization techniques for better performance. For 
metric-based methods, Mahajan et al. [5], integrated group-equivariant 
convolutions into Prototypical Networks, enabling better feature invariance 
for dermatology. Desingu Kar et al. [6], proposed a meta-training technique 
for dermoscopic images, improving feature embedding for rare diseases.

GCProNet enhances Prototypical Networks by integrating Graph 
Neural Networks (GNNs) and memory units, addressing the challenges of 
few-shot skin disease classification. By capturing relational dependencies 
between support samples and incorporating continual learning, 
GCProNet improves prototype accuracy and generalization, especially for 
rare dermatological conditions.

METHODOLOGY

Problem Definition

Severe data scarcity—particularly for rare dermatological 
pathologies—poses fundamental challenges for classification, necessitating 
models that generalize to novel categories under minimal supervision. 
Formally, we define mutually exclusive datasets: a training dataset Dtrain 
for model learning and a testing dataset Dtest containing novel classes 
(Dtrain ∩ Dtest = ∅). Within the N -way K-shot framework, a support set 

 provides limited supervision, while a 
query set  (unseen during training) evaluates 
generalization. The core challenge is leveraging S ⊂ Dtrain to accurately 
classify novel dermatological categories in Dtest given only K exemplars 
per class. The GCProNet model addresses this by expanding the feature 
space with graph-based methods that capture relational dependencies 
and enhancing feature extraction through CNNs. Additionally, GCProNet 
employs continual learning to preserve and transfer knowledge across 
tasks, improving its ability to classify skin diseases from limited training 
data.

The Model

GCProNet integrates graph-convolutional feature enhancement with 
prototypical networks to advance few-shot dermatological classification. 
As shown in Figure 2 and 3, our architecture overcomes traditional 
limitations through relational context modeling and flexible knowledge 
transfer.

Feature Extraction: GCProNet employs a CNN embedding backbone 

 

            

Figure 1: Skin disease datasets ISIC 2018 [1], Derm7pt [2], and SD-198[3] exhibit long-tail distributions. Models train on head classes (common 
diseases, red) and test on scarce tail classes (rare diseases, blue), creating a significant few-shot learning challenges.
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[27], for discriminative feature extraction, utilizing architectures such as 
Conv4, Conv6, or Wide ResNet (WRN) to extract discriminative features 
from dermatological support and query images, formally defined in 
Equation 1:

                                    (1)

In this context,  is the feature vector for the input image xi, 
while θ denotes the learnable parameters of the CNN. The architecture 
typically consists of convolutional layers to capture spatial information, 
blending layers to reduce dimensionality and improve generalization, and 
fully connected layers that combine the extracted features into the final 

representation . This feature vector effectively encodes the critical 
visual attributes of skin diseases, such as texture, shape, and pattern, 
which are essential for subsequent classification tasks. In particular, 
the quality and precision of the extracted features have a direct bearing 
on the success of subsequent graph-based feature enhancement and 
the classification process within the Prototypical Network framework. 
Consequently, GCProNet’s overall performance relies heavily on CNN’s 
ability to extract high-quality, discriminative features that accurately 
capture the disease characteristics.

Graph Construction and Continual Knowledge Transfer: Following 
the extraction of features using CNN, the next step involves constructing 
a graph from the representations of the characteristics of the support set. 

 

Figure 2: GCProNet architecture for few-shot dermatological diagnosis. In 3-way 2-shot tasks, a CNN backbone extracts dermoscopic features, 
dynamically aggregated via graph-structured propaga- tion (edge-learned relationships) and fused with GRU-stabilized embeddings. Optimized 
prototypes P1, P2, P3 enable metric-based classification, addressing data scarcity through graph-guided knowl- edge transfer

Figure 3: GCProNet integrates prototypical networks with GCN-based feature propagation and GRU-gated knowledge preservation for continual 
dermatological classification in sequential tasks (T1-Tn).
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This begins with the formation of an adjacency matrix A, which enables 
the integration of characteristics and the relationships between models. 
This aggregation enhances the feature vectors, strengthening their 
representational capacity and robustness for downstream tasks.

Graph Construction: Support image feature vectors, represented 
as  serve as graph nodes, with each node 
corresponding to  The adjacency matrix A encodes the pairwise 
relationships between these nodes, where each element Aij measures 
the similarity between the nodes i and j. The specific formulation of this 
similarity is provided in Equation 2:

                                   (2)

where d(·,·) denotes a distance metric, typically the Euclidean 
distance, employed to evaluate similarity between feature vectors 

 via a Gaussian kernel. The parameter σ2 serves as a scaling 
factor, consistent with methodologies such as embedding propagation 
[28], and TPN [15].

Feature Aggregation: The model applies the feature aggregation 
function  to each node after the graph has been established. 
This process is implemented through the utilization of graph based 
neural network techniques, specifically graph-convolutional networks 
(GCNs) [29]. Equation 3 mathematically describes the aggregation of 
characteristics:

                             (3)

where  denotes the adjacency matrix with self-loops, ˆD 
is its corresponding degree matrix, W the learnable weight matrix, and 
σ a non-linear activation (e.g., ReLU). After two propagation layers, node 
embeddings incorporate multi-hop neighborhood context, synthesizing 
localized patterns and global structural relationships into discriminative 
representations.

Continual Knowledge Transfer via GRU Memory Units: After 
aggregating graph-based features, GCProNet employs Gated Recurrent 
Units (GRUs) [30], to enable effective knowledge transfer across tasks, 
addressing the issue of catastrophic forgetting in sequential few-shot 
dermatological classification, as illustrated in Figure 3. GRUs accomplish 
this by employing two adaptive gating mechanisms: 1. Update Gate 
(zt): Controls the retention of the previous hidden state ht−1, thereby 
preserving long-term dependencies that are critical for maintaining 
inter-task feature consistency. 2. Reset Gate (rt): Manages the integration 
of historical context into the current candidate state , enabling the 
model to discard obsolete patterns and incorporate novel lesion classes 
effectively. The dynamics of the GRU are governed by the following set of 
equations: 

                                        

						       (4)

where [; ] denotes vector concatenation, ⊙ represents element-
wise multiplication, and fagg(xi) ∈ Rd refers to the graph-refined feature 
representation from task t. The learnable parameters Wz, Wr, and Wh are 
meta-optimized to balance the contributions of historical knowledge 
ht−1 and incoming task embeddings fagg(xi), and σ denotes the sigmoid 
activation function. By iteratively refining ht, the GRUs construct a 

dynamically evolving feature space that retains critical dermatological 
patterns (such as lesion texture and border irregularity) across tasks. This 
process effectively prevents feature degradation when incrementally 
learning rare classes with fewer than or equal to five samples. The 
final GRU-enhanced embeddings ht are subsequently propagated to the 
prototypical network, where they stabilize the prototype computation by 
ensuring both inter-class separability and intra-class compactness—key 
characteristics for robust few-shot classification.

Feature Space Expansion: GCProNet’s architecture systematically 
expands the feature space of the support set, facilitating richer and 
more discriminative representations essential for accurate skin disease 
classification. This enhanced representation results from the fusion 
of CNN-extracted features, refined through graph-based methods and 
sequentially encoded using Gated Recurrent Units (GRUs), mathematically 
formulated as follows:

                            (5)

Here,  denotes the expanded feature vector for each image xi 
integrating the initial CNN features  with the feature enhancements 
provided by the GRU ht. Unlike conventional prototype networks 
that rely on simple feature averaging, GCProNet integrates individual 
features with their contextual interrelations within the support set, 
substantially enhancing classification accuracy. This approach is 
especially advantageous in few-shot learning, where limited data 
necessitates leveraging both local and global feature contexts to maximize 
performance and generalizability.

Prototypical Network and Loss Optimization: In the GCProNet 
framework, the Prototypical Network [4-31], utilizes the enriched feature 
space to generate class prototypes, each defined as the mean vector of 
expanded support set features for class c. These prototypes serve as 
representative centroids crucial for accurate classification, as follows:

                                   (6)

where Nc denotes the number of samples in class c, and fexp(xi) 
represents the enriched feature vectors of ith the sample. For the query 
images, feature vectors are extracted via the CNN, ensuring distinct 
representations for comparison. These query features are then evaluated 
against the class prototypes within the expanded feature space, employing 
the Euclidean distance to quantify similarity. The distance between the 
feature vector of query image qj and prototype Pc is defined as:	

                                (7)

This distance metric forms the basis of the classification decision, 
where the class assigned to each query corresponds to the nearest 
prototype. To express this decision probabilistically, a softmax function 
is applied over the negative distances, yielding a probability distribution 
over all classes:

                        (8)

Model training is guided by the cross-entropy loss, computed as:

                    (9)
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where  denotes the indicator function, equal to 1 when the true 
label of qj is c, and 0 otherwise. By employing this enhanced methodology 
within the Prototypical Network, underpinned by an improved feature 
space, GCProNet significantly enhances its ability to accurately classify 
skin diseases, especially in few-shot learning scenarios.

EXPERIMENTS

To evaluate GCProNet, we conducted experiments on two widely 
recognized benchmark datasets: ISIC-2018 [1] and Derm7pt [2]. These 
collections, which comprise a diverse array of dermatological images, 
serve as critical resources for assessing and enhancing the model’s 
capability in skin lesion classification.

Datasets

ISIC-2018 dataset: The ISIC-18 [1], comprises 10,015 dermoscopic 
images of skin lesions, classified into seven categories. For training, 
four classes (9,431 images) were used, while three classes (584 images) 
served as the test set. To ensure computational efficiency, all images 
were resized from 600×450 to 224×224 pixels. For few-shot learning 
experiments, four classes were designated for meta-training, and three 
classes were used for meta-testing, capturing the complexity inherent in 
clinical skin lesion diagnosis. Representative samples from the dataset 
are illustrated in Figure 4(a). 

Derm7pt Dataset: The Derm7pt dataset [2] contains over 2,000 clinical 
and dermoscopic images across 20 lesion categories. After resizing 
from 768×512 to 224×224 pixels, standard augmentations (cropping, 
rotation, and flipping) were applied. Excluding the “miscellaneous” and 
“melanoma” classes due to insufficient samples, 18 categories were 
divided into 13 training and 5 testing classes. The dataset was further 
split into a base set (1,892 images, 40–698 per class) and a novel set (114 
images, 10–34 per class), reflecting real-world data scarcity challenges. as 
illustrated in Figure 4(b). 

SD-198 Dataset: The SD-198 dataset [3] comprises 6,584 clinical images 
spanning 198 dermato logical conditions. Images were resized from 1640 
× 1130 to 224 × 224 pixels for experimental consistency. For evaluation, 
we tested 70 rare-disease classes (≤ 20 images/class), while 20 classes 
(60 images/class) were used for training, ensuring a fair assessment 
under limited-data conditions. Representative sample images from the 
dataset are illustrated in Figure 4(c).

Implementation Details

Network Architecture: The proposed framework combines three 
embedding architectures: Conv4, Conv6, and Wide ResNet (WRN-28-
10) [32]. Conv4 and Conv6 are shallow CNNs with 4 and 6 convolutional 
layers, respectively, each utilizing 64 kernels (3×3), ReLU activation, 
batch normalization [33], and 2×2 max-pooling. The deeper WRN-28-10 
features 28-layer residual blocks with a widening factor of 10, improving 

 

Figure 4: Sample images illustrating skin lesions from diverse datasets: (a) ISIC 2018 dataset, (b) Derm7pt dataset (clinical and dermoscopic 
images), and (c) SD-198 dataset.

gradient flow and feature representation. A graph neural network (GNN) 
with two graph convolutional layers processes adjacency matrices to 
aggregate node-level features, capturing relational patterns vital for few-
shot classification. Gated Recurrent Units (GRUs) [30], consolidate cross-
task knowledge, enhancing model generalization across diverse few-shot 
tasks. 

Experimental Settings: The model was implemented in PyTorch and 
trained on an NVIDIA A100- SXM4-40GB GPU. We followed standard few-
shot learning protocols for the ISIC-2018, Derm7pt, and SD-198 datasets. 
For ISIC-2018, we used 2-way 1/3/5-shot configurations, while Derm7pt 
and SD-198 employed 2-way 1/5-shot setups. Each episode sampled 5 
query images, and performance was assessed using query-set accuracy 
and macro-F1 scores. Training followed the N-way K-shot episodic 
paradigm, with the Adam optimizer [43], a learning rate of 10−4, and 
weight decay of 10−3. The models were trained for 1000 epochs on ISIC-
2018, 1500 epochs on Derm7pt, and 2000 epochs on SD-198 to ensure 
sufficient adaptation to each dataset’s challenges.

Experimental Analysis

We assess GCProNet on ISIC-2018 [1], Derm7pt [2], and SD-198 
[3] under 1/3/5-shot settings. It couples a GNN for relational reasoning 
over the support set with a GRU-based memory for continual retention, 
mitigating prototype bias and catastrophic forgetting.

Result on the ISIC-18 dataset, as shown in Table 1, GCProNet 
achieved 80.5% accuracy and 83.2% AUC in the 5-shot configuration, 
significantly surpassing baseline models like MetaDerm [6], (73.1% 
accuracy) and PCN [24], (73.0% accuracy). In the 1-shot configuration, 
GCProNet demonstrated robust generalization with 67.3% accuracy, 
outperforming Meta-DD [5], (59.3%) and MetaDerm (58.9%). This 
superior performance is attributed to the model’s GNN-driven relational 
aggregation and GRU-powered continual knowledge transfer, which 
mitigate common issues in rare dermatological datasets [7-24].

On the Derm7pt dataset, which includes clinically annotated 
dermoscopic images as shown in Table 2, GCProNet excelled at inferring 
diagnostic patterns, such as pigment networks and vascular structures. 
Using the WRN-28-10 backbone, GCProNet achieved 86.12% accuracy 
in the 5-shot configuration, outperforming SCAN [7] (82.57%) and 
MetaDerm (67.0%). In the 1-shot configuration, GCProNet reached 
68.19% accuracy, surpassing SCAN (62.80%) [7]. The hybrid architecture 
of GCProNet, which integrates CNNs for localized feature extraction, GNNs 
for relational aggregation, and GRUs for continual knowledge retention, 
enabled it to significantly outperform baseline models. Notably, GCProNet 
improved F1-scores by 2.2–4.3% over MetaDerm and Multi-task [34], 
demonstrating better precision-recall trade-offs, which are crucial in 
medical diagnostics.

For the SD-198 dataset as shown in Table 3, which spans 198 skin 
diseases, GCProNet achieved a 5-shot accuracy of 92.63% and 1-shot 
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Table 1: Average accuracy and area under the curve (AUC) for 2-way 1/3/5-shot on ISIC-18 with a Conv6 backbone.

Table 2: Results on Derm7pt: GCProNet vs. baselines under 2-way 1-shot and 2-way 5-shot; reported as F1 and accuracy

Method Backbone
2-way

Accuracy

1-shot

F1-score

2-way

Accuracy

5-shot

F1-score

PCN [24]

Conv4

59.98% 58.54% 70.62% 71.85%

SCAN [7] 61.42% 61.90% 72.58% 74.05%

GCProNet 63.13% 63.08% 74.25% 74.90%

Meta-DD [5] 61.8% — 76.9% —

MetaDerm [6] 62.3% — 67.0% —

SCAN [7] 62.80% 63.75% 76.65% 73.60%

CDD-Net [35] Conv6 59.46% — 73.78% —

Multi-task [33] 62.70% — 77.83% —

MTDD [34] 63.35% 63.98% 75.61% 76.11%

GCProNet 68.19% 67.36% 77.65% 77.02%

NCA [36] 56.32% 56.41% 67.18% 68.13%

Baseline [37] 59.43% 59.61% 74.28% 75.26%

S2M2-R [38] 61.37% 61.52% 79.83% 80.69%

NegMargin [39] 58.00% 57.50% 70.12% 71.07%

PT+NCM [40] WRN-28-10 60.92% 61.12% 74.33% 74.96%

BEM E-NCM [41] 60.40% 60.57% 72.63% 73.01%

EASY [42] 61.02% 61.25% 75.98% 76.43%

SCAN [7] 66.75% 67.71% 82.57% 83.73%

GCProNet 70.08% 68.77% 86.12% 85.96%

Model Backbone Metric 1-shot                  3-shot	            5-shot

Meta-DD [2] Avg.
Avg.

Accuracy
AUC

59.3%
61.6%

67.9%
70.2%

73.0%
75.7%

MetaDerm [3]
Multi-task [32] Conv6

Avg. 
Avg.
Avg. 
Avg.

Accuracy AUC
Accuracy AUC

58.9%
69.1%
62.7%

—

68.3%
72.3%
73.1%

—

73.1%
80.6%
77.6%

—

MTDD [33] Avg. 
Avg. Accuracy AUC 60.5%

—
69.8%

—
76.3%

—

GCProNet Conv6
Avg. Accuracy

Avg. AUC

67.3%	           75.8%	          80.5%

69.6%	          79.6%	          83.2%
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Table 3: Results on SD-198: GCProNet vs. baselines under 2-way 1-shot and 2-way 5-shot; reported as F1 and accuracy.

Method Backbone
2-way

Accuracy

1-shot

F1-score

2-way

Accuracy

5-shot

F1-score
PCN [24]

Conv4
70.03% 70.78% 84.95% 85.87%

SCAN [7] 77.12% 78.00% 90.22% 91.01%
GCProNet 77.89% 77.51% 86.05% 85.82%

Meta-DD [5] 65.3% - 83.7% -
SCAN [7]

GCProNet Conv6 76.75%
77.30%

77.64%
77.84%

87.45%
87.60%

88.28%
87.38%

NCA [37] 71.27% 71.27% 83.30% 84.23%
Baseline [38] 75.72% 76.64% 88.95% 84.23%
S2M2-R [39] 76.42% 77.51% 90.32% 90.97%

NegMargin [40] 76.85% 77.98% 89.92% 90.65%
PT+NCM [41] WRN-28-10 78.25% 78.86% 90.33% 90.90%

BEM E-NCM [42] 78.32% 78.70% 90.48% 90.94%
EASY [43] 78.80% 79.44% 90.87% 91.43%
SCAN [7] 80.20% 81.21% 91.48% 92.08%

GCProNet 80.23% 79.98% 92.63% 92.48%

accuracy of 80.23% using the WRN-28-10 backbone, surpassing SCAN 
(91.48%) and EASY [41] (90.87%). The GRU component played a 
critical role in reducing forgetting rates, ensuring that GCProNet retained 
discriminative features across sequential tasks. However, when using 
the Conv4 backbone, GCProNet underperformed compared to SCAN in 
the 5-shot setting (86.05% vs. 90.22%), suggesting that lightweight 
backbones may not fully leverage relational dependencies without further 
optimization. This highlights the need for task-specific adaptations in 
graph-based learning to handle more complex feature spaces [40-42]. 
Finally, GCProNet represents a significant advancement in few-shot 
learning for dermatology, combining graph-based relational learning with 
continual knowledge retention. It addresses key challenges in rare disease 
classification, including sparse data, intra-class variability, and evolving 
diagnostic criteria [20,21]. As shown in Figure 5, the experimental results 
consistently highlight GCProNet’s superior performance compared to 
baseline methods across all evaluated datasets.

This demonstrates GCProNet’s robust few-shot generalization, 
enabling clinical deployment in resource-limited settings with scarce 
data.

Ablation studies

Component Analysis: The study highlights the critical impact of individual 
GCProNet components on dermatopathological classification. Removing 
the graph-based module (Prototype w/o Graph) led to performance drops 
across all datasets, particularly in the 1-shot case (ISIC-2018 accuracy 
reduced from 67.3% to 62.8%). Similarly, eliminating prototype learning 
(Graph w/o Prototype) further decreased accuracy, underlining the 
importance of relational dependencies for effective generalization. The 
exclusion of Gated Recurrent Units (GRUs) (GProNet w/o GRU) resulted 
in a notable performance decline, especially in the 5-shot scenario 
(ISIC-2018 accuracy fell from 80.5% to 77.46%), demonstrating GRUs’ 
role in preserving and transferring knowledge to prevent catastrophic 
forgetting. In contrast, integrating all components into the full GCProNet 
model significantly improved results: 80.5% accuracy on ISIC-2018 
(5-shot), 77.65% on Derm7pt, and 87.60% on SD-198. These findings 
underscore the synergy of graph-based relational learning, prototype-
based classification, and GRUs in addressing the challenges of sparse data, 
intra-class variability, and long-term knowledge retention.

Grad-CAM for Enhanced Feature Interpretation in GCProNet: 
Gradient-weighted Class Activation Mapping (Grad-CAM) is a powerful 
method for visualizing the regions within an image that are most influential 
in a model’s decision-making process. In the case of GCProNet, Grad-
CAM generates heatmaps that are overlaid on the input images, visually 

Figure 5: Comparative evaluation of GCProNet against baseline methods on three dermatology datasets (ISIC 2018, Derm7pt, and SD-158) under 
a 5-shot learning setting..
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Figure 6: Grad-CAM visualization applied to GCProNet for skin disease classification. The heatmaps highlight the most relevant regions of the input 
images, demonstrating the areas of the image that contribute most significantly to the model’s classification decision.

Table 4: Ablation study comparing GCProNet’s effectiveness in 2-way few-shot learning tasks, employing a Conv6 backbone across the ISIC-2018, 
Derm7pt, and SD-198 datasets

Method
ISIC-2018 Derm7pt SD-198

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

 Prototype w/o Graph 

 Graph w/o Prototype  GProNet w/o 
GRU

62.8%

55.3%

63.02%

74.1%

73.6%

77.46%

62.5%

58.2%

64.43%

66.9%

64.6%

71.83%

69.7%

67.2%

73.25%

74.50%

71.78%

82.56%

Integrated

(GCProNet)
67.3% 80.5% 68.19% 77.65% 77.30% 87.60.%

representing the areas that contribute most to the classification outcome. 
This technique provides enhanced transparency, which is essential in the 
medical field, where the interpretability of automated systems is critical. 
By identifying the key features that drive model predictions, Grad-CAM 
strengthens the reliability and trustworthiness of GCProNet, enabling 
clinical validation and offering evidence-based insights into the model’s 
performance. As illustrated in Figure 6, this visualization fosters greater 
understanding and confidence in the automated classification of skin 
diseases.

Limitations and Future work: Despite strong few-shot performance 
in dermatological image classification, GCProNet remains sensitive to 
extreme class imbalance and pronounced intra-class variability. Future 
work will improve robustness to severe imbalance, advance relational 
modeling, and incorporate domain knowledge (e.g., lesion context and 
multi-modal cues) to further enhance generalization.

CONCLUSION

GCProNet overcomes ProtoNets’ limitations through graph-relational 
reasoning and continual adaptation for data-scarce dermatological 

classification. By integrating a graph-based framework to capture 
relational dependencies among support samples and incorporating Gated 
Recurrent Units (GRUs) for knowledge retention, GCProNet significantly 
enhances both the accuracy and stability of dermatological diagnosis, 
particularly for rare skin conditions. Extensive evaluations on the Derm7pt, 
SD-198, and ISIC 2018 datasets demonstrate substantial improvements 
in classification performance, highlighting GCProNet’s ability to overcome 
challenges such as data scarcity and prototype inaccura- cies. GCProNet sets 
a new benchmark for few-shot learning in medical applications, paving the 
way for more reliable diagnostic tools in dermatology and beyond.
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