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Abstract
Extracellular vesicles (EVs) are nanosized particles, secreted by most, if not all cell types, enclosed by a bilayer phospholipid 

membrane, and mediate crucial intercellular communications by carrying and transporting many active biological molecules. These 
naturally occurred nanoparticles are emerging as a promising drug delivery system. In particular, EVs from mesenchymal stem cells 
(MSC-EVs) offer numerous advantages as drug delivery vehicles due to their unique features, as briefly reviewed below in Figure 1.
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Figure 1: Summary of the Advantages of Mesenchymal Stem Cell-Derived Extracellular Vesicles as Drug Delivery Systems.

THE CAPACITY TO DELIVER BOTH SOLUBLE CARGOES 
AND MEMBRANE BOUND THERAPEUTIC MOLECULES

MSC-EVs have the capability to deliver a variety of therapeutic 
cargoes, including soluble agents like small molecule drugs and RNAs as 
well as membrane-integrated therapeutic molecules such as proteins and 
antibodies [1,2]. By encapsulating these therapeutic molecules, MSC-EVs 
not only enhance the stability and bioavailability of the drugs but also 
enable co-delivery of synergistic drugs [3,4]. For example, chemotherapy 
drugs doxorubicin with miR-159 or 5-fluorouracil (5-FU) with miR-
21i could be co-delivered for synergistic anticancer therapies [5,6]. 
Previously we genetically transduced MSCs to express the proapoptotic 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) [7] and 
found the transduced cells secreted EV-membrane incorporated TRAIL 
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(EV-T) [8]. Further we encapsulated the chemotherapy dinaciclib (Dina) 
into EV-T to fabricate a complexed nanodrug Dina@EV-T, which overcame 
TRAIL resistance and showed strikingly augmented anticancer efficacy by 
either intravenous (i.v.) [4] or nebulized administration [9]. Additionally, 
the CDK9-targetting siRNA could be loaded into EV-T for precision 
anticancer medicine [10]. Therefore, MSC-EV mediated co-delivery of 
drugs enables high efficacy of combinatory therapies.   

GOOD STABILITY BOTH IN VITRO AND IN VIVO 

As the natural drug carrier, MSC-EVs have shown good stability both 
in vitro and in vivo [9]. The membrane structure of EVs forms a natural 
and biocompatible platform to not only protect the enclosed drugs from 
premature degradation by enzymes and other degradative processes, but 
also help in maintaining the stability of labile therapeutics. The in vivo 
stability of EVs was proposed to be further enhanced by the coating of an 
albumin-enriched protein corona and consequent immune evasion [11].  

THE ABILITY TO INFILTRATE AND PENETRATE TISSUES 
AND THE BLOOD-BRAIN BARRIER 

EVs have innate capacity to cross various biological barriers including the 
blood-brain barrier (BBB) [12]. The tissue permeability of nanomedicines 
was traditionally assumed to be mainly mediated by the enhanced 
permeability and retention (EPR) effect. However, the advancements in 
this area have unveiled a possible transcytosis mechanism, by which EVs 
can migrate through endothelial cells [13]. This property highlights the 
attractive potential of EV-based therapies for brain disorders and tumors 
[14]. Indeed, MSC-EVs have been recently harnessed to successfully 
deliver therapeutic siRNAs to the striatum of mice brain, leading to the 
synergistic alleviation of neuronal death in a model of Parkinson’s disease 
(PD) [12]. 

TISSUE AND ORGAN TROPISMS 

The tropism of MSC-EVs to certain damaged, inflammatory or 
diseased tissue and organs enable targeted delivery of therapeutic agents 
[4-15]. This phenomenon is likely mediated by EV surface molecules, such 
as tetraspanins, latex adhesion proteins, and integrins [16]. As an instance, 
MSC-EVs showed preferential tropism to animal acute lung injury (ALI), 
by contrast, HEK293T cells-derived EVs were mainly accumulated in 
the spleen and liver [17]. The systemically infused MSC-EVs were found 
to penetrate and accumulate in tumors, suggesting their feasibility 
for delivery of tumor-targeting therapy. [4] For example, doxorubicin 
encapsulated MSC-EVs were revealed to home to osteosarcoma via a 
CXCR4-SDF1 axis, resulting in enhanced anticancer activity [18]. 

GOOD BIOAVAILABILITY AND BIOCOMPATIBILITY

Compared to synthetic carriers such as liposomes or other 
nanoparticles, MSC-EVs demonstrated good biocompatibility and 
bioavailability as drug delivery systems [1,2]. As carriers, EVs can 
transport their cargo across cell membranes to specific intracellular 
locations. Importantly, the lipid membrane structure renders MSC-EVs 
good biological barrier penetrating capacity, in vivo stability, reduced 
immune clearance, and consequently improved drug delivery efficiency 
[19]. Furthermore, the low immunogenicity and good tolerability of MSC-
EVs allow for their safe use in vivo, minimizing the risk of eliciting adverse 
reactions [4]. The desirable biocompatibility and bioavailability make 
MSC-EVs ideal candidates for drug delivery carriers.

LOW IMMUNOGENICITY AND GOOD SAFETY

MSC-EVs are increasingly recognized for their low immunogenicity, 
a characteristic pivotal to their therapeutic potential in various diseases 
[20]. Certain EV surface components, such as galectins, integrins, and 
tetraspanins, play a masking role from the immune system leading to 
the low immunogenicity of MSC-EVs [21]. Additionally, the EV surface 
glycans and lipids also act as key signaling molecules to influence 
the immunogenicity, with the glycan composition dictating cellular 
internalization and biodistribution, while lipids contributing to 
intercellular communication and immune modulation [21]. It is well-
known that major histocompatibility complex (MHC) molecules are 
crucial for antigen presentation to trigger immune responses, thus play 
an important role for immunogenicity. MSC-EVs have been revealed to 
be negative for MHC expression, indicating their low immunogenicity 
[22]. Actually, the systemic administration of MSC-EVs did not cause 
any adverse side effects on liver function, blood cell counting and organ 
physiology in experimental animals [4]. 

In the realm of safety evaluation, the administration of extracellular 
vesicles (EVs) has demonstrated notable superiority. Preclinical studies 
have revealed the superior efficacy, safety, and versatility of MSC-EV 
therapies compared to the MSC therapy, suggesting the satisfactory safety 
of MSC-EV delivery of therapeutics for disease treatment [23]. Indeed, 
over 20 completed or ongoing MSC-EV clinical trials have demonstrated 
good safety and certain efficacies in various diseases.[20] Moreover, 
in a phase 1 clinical trial, 24 healthy volunteers were administered of 
2–16×108 allogeneic MSC-EV particles by inhalation, and all showed good 
tolerance to the infusion without any adverse reactions observed [24].

IMMUNE EVASION

The application of nanomedicine faces a huge challenge, i.e., the rapid 
uptake and subsequent clearance of nanoparticles from the bloodstream 
by the mononuclear phagocyte system (MPS) [25]. Interestingly, the 
integrin-associated protein CD47 was found to express on MSC-EVs [4] 
and act as a marker of self to prevent clearance by the MPS in the liver 
and spleen [26]. This feature allows phagocytic evasion of MSC-EVs, and 
provides an approach for improving pharmacokinetics of therapeutics 
and thus potentially enhancing therapeutic efficacies. This advantage 
underscores the versatility and potential of MSC-EVs as a drug delivery 
vehicle for therapeutic applications [27]. 

MODIFICATION FLEXIBILITY

The enclosed lipid membrane structure and specific surface 
compositions enable flexible modification of MSC-EVs for either the 
targeted delivery of therapeutics or EV labelling and tracking within cells 
or tissues. There are various EV surface modification strategies available, 
including genetic engineering or metabolic engineering of EV-producing 
cells, click chemistry, ligand-receptor interaction, hydrophobic interaction, 
and anchoring peptide or aptamer-mediated modifications. [28] Also, 
different labelling approaches have been developed for EV imaging, 
pharmacokinetic investigation, or examination of in vivo biodistribution, 
such as bioluminescent, fluorescent, or radioactive labelling. [4-28] 
Furthermore, both drug pre-loading and post-loading strategies can be 
applied to engineer MSC-EVs for enhanced therapeutic efficacies. [4-30] 
Despite the aforenoted versatility and potential, one must be careful to 
determine MSC-EV modification strategies, considering the modifications 
may cause undesired immunogenicity, reduced physicochemical stability, 
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and the biosafety concern.[28]    

In summary (Figure.2), MSC-derived extracellular vesicles offer 
several advantages as drug delivery systems. They exhibit high 
biocompatibility and low immunogenicity, ensuring safe administration. 
These vesicles can efficiently target specific tissues and cells, enhancing 
therapeutic efficacy. Additionally, they are capable of carrying a diverse 
range of therapeutic molecules, including proteins, RNA, and small 
molecules. Their nanoscale size allows for easy penetration into tissues, 
and they can be readily produced and stored, making them a practical 
option for clinical applications. 
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