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Introduction
An engineering equivalent of a biological lateral line is of great interest to the navigation and 

control of underwater robots and vehicles. In particular, an artificial lateral line will represent a new, 
noiseless sensing modality for underwater applications that is complementary to traditional sensors 
such as vision and sonar [1,2].

The horizontal line framework (Artificial Lateral Line ALL) is a vital tangible organ for fish 
and oceanic creatures of land and water [1,3], and it is included in different creature practices, 
including prey/predator location [4], tutoring [5], rheotaxis [6], romance and correspondence [3]. A 
horizontal line comprises of varieties of supposed neuromasts, each containing packs of tactile hairs, 
epitomized in a thick structure called cupola. Under an impinging stream, the hairs are diverted, 
which evokes terminating of the hair cell neurons and hence empowers the creature to distinguish 
close field objects of intrigue and perform hydrodynamic imaging of the earth.

It is important to create simulated parallel line frameworks for submerged applications. This 
would give another detecting module in supplement to existing detecting components, for example, 
sonar and imaging, and encourage the control and coordination of submerged robots and vehicles. 
Building of sidelong line sensors has gotten expanding enthusiasm for as far back as couple of 
years. On the equipment side, varieties of stream sensors, unequivocally propelled by the organic 
sidelong line, have been created in light of different transduction standards, for example, hot wire 
anemometry [7], piezoresistivity [8], capacitive detecting [9], and typified interface bilayers [10]. 
We have as of late revealed a simulated horizontal line that endeavors the detecting capacity of Ionic 
Polymer-Metal Composite (IPMC) materials [11].

There have additionally been various flag preparing plans proposed for simulated ALL lines. 
The majority of these plans have been centered around the issue of restricting a vibrating circle, 
known as a dipole. Dipole sources have been widely utilized as a part of physiological and behavioral 
investigations of natural parallel lines, since they give basic copying of tail beating or member 
development of amphibian creatures. What’s more, logical articulations of the subsequent stream 
field under a dipole are accessible, which encourages the calculation improvement. Revealed flag 
preparing plans have included misuse of the trademark focuses (e.g., zero-intersections, maxima, 
and so on.) in the deliberate speed profile [9], coordinating of the deliberate information with 
pre-gotten formats [12], beam forming procedures [8], and counterfeit neural systems [11]. Most 
existing work manages a dipole source that has settled vibration sufficiency and introduction. At the 
point when the vibration abundance is fluctuating, the issue winds up noticeably difficult, mostly on 
the grounds that a source far away yet with extensive vibration and another source adjacent yet with 
little vibration could deliver signs of comparative amplitudes. Such uncertainty is tended to by our 
current work [13], where a nonlinear estimation issue is planned in light of a diagnostic model of 
the dipole-created stream field. There the source area and the vibration plenty fullness are dealt with 
as questions that we try to recognize, given the stream adequacy estimation by the sensor exhibit.

In this paper we extend the work in [13] to consider the estimation and derive the mathematical 
statistical CBR to the moving but not vibrating object and estimate its shape parameters. If we 
consider the scenario of one fish detecting a predator using its lateral line system , the solution to the 
aforementioned problem would imply that the fish not only knows where the predator is, but also 
which way it is swimming toward. There are similar implications for artificial later al line systems. 
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To solve this problem, we treat the source location, it velocity and 
shape parameters as unknowns of a nonlinear estimation problem, 
and then present non linear Kalman filtering method.

Simulation results have been conducted to examine the 
effectiveness of the proposed scheme. Simulation has been conducted 
to examine the effectiveness of the proposed scheme. The remainder 
of this paper is organized as follows. We first present the model for 
the flow field generated by a moving object in a two-dimensional 
(2D) potential flow, and formulate the estimation problem in Section 
II. The filtering scheme is described in Section III, followed by the 
simulation CBR analysis in Section IV. Finally concluding remarks 
are provided in Section V.

Flow Model and Problem Formulation
In this paper we accept a two-dimensional (2D) potential stream. 

Consider a barrel shaped protest traveling through a generally still 
liquid. We initially introduce the unique instance of roundabout 
cross-area, and afterward sum up the model to a subjective cross-
segment profile utilizing the conformal mapping hypothesis.

Consider the 2D plane z iyx= + . Without the loss of generality, 
assume that the cylinder is moving along x-direction with its cross-
section lying in the x - y plane. The complex potential cw (z) , where z 
is outside the region occupied by the cylinder, is given by [14]. 

                 

                 (1)

Where the superscript c indicates the case of a circular profile, vx 
denotes the moving speed, R is a radius of the circular cross-section, 
and 1 sz =xs+iy  denotes the center of the moving cylinder. The 
corresponding complex flow velocity Wc is then given by 

      

                 (2)

If we write ,c c c
x yw (z) v +i v= then

                             (3) 

                

                 (4)

For a cylinder with a general shape (Figure.1), its cross-section 
profile can be obtained by mapping the circular profile with the 
Laurent series expansion [15]: 

      
           (5)

Where λ 1, λ 2, ,⋅ ⋅ ⋅  are the shape parameters. When the shape 
parameters are real, the obtained shape will be symmetric with respect 
to the x-direction. It can be shown that the complex flow velocity 

Wg(z) around the moving object with a general profile is 

       
                

                (6)

In (6), z ∈ D, the domain exterior to the object with the general 
profile. Since the impact of higher-order 
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Figure 1: Illustration of the Laurent series expansion : (a) Circle ζ (z) = z; (b) 
the shape fingerprint ζ (z) = z + 1/(2z); (c) the shape fingerprint ζ (z) = z + 1/
(2z) + 1/(6z2); (d) the shape fingerprint ζ (z) = z + 1/(2z) + 1/(6z2) + 1/(12z3)
(adapted from [15]).

Terms in (5) decays quickly with the distance from the object 
[15], in this chapter, we consider the case of ellipsoidal profile only, 
namely, 1 i i0, 0, 1λ ≠ λ = ∀ > . Furthermore, we assume that 1λ  
is real. Using (6), we can derive the complex flow velocity eW (z)
around an ellipsoidal cylinder:

                (7)

If we write ,e e e
x yW (z) = v +i v  then

                 (8)
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(9)

We now formulate the problem of localizing a moving object with 
ellipsoidal profile and estimating its size/shape in the x-y plane using 
an array of flow sensors. Consider Figure 2, where an artificial lateral 
line comprising N sensors is located in parallel to the x-axis, with 
the sensor locations denoted as i i( , ),0 i N 1x y ≤ ≤ − . We denote the 
center of the moving cylinder at time t by s( (t), y (t))sx . The object 
is assumed to move with a constant speed 

xV  parallel to the lateral 
line. We further assume that the presence of sensors has negligible 
effect on the flow field generated by the moving object. Each sensor 
is assumed

to provide a noisy measurement of the local flow velocity 
xV  

along the x-direction. In particular, the measurement im (t)  by 
sensor i at time t is given by

 

              (10)

Where the function fe follows from (8), and in  is the measurement 
noise. We introduce a compact notation for the measurements from 
all sensors,

Where T denotes transpose,

and T
1 Nn(t) [n (t)...n (t)]= .

The estimation problem is then formulated as: given the 
measurements from the artificial lateral line, M( )⋅ , determine the 

object location s s( (t), y (t))x , speed xV , size parameter R, and 
shape parameters 1 2,λ λ .

Extended Kalman Filter
In this paper we propose to solve the tracking and estimation 

problem with extended Kalman filtering. We first provide a brief 
review of extended Kalman filtering, when the measurement equation 
involves nonlinearities [16]. The discrete-time setting is considered in 
this work, where the time index is denoted by k. Suppose that the 
system dynamics is given by 

                                

              (11)

Where kX n∈  
denotes the state vector, k 1A −  has dimensions 

p
kn n, M× ∈  denotes the measurement, f ( )⋅  is a nonlinear 

function, and k-1
nw ∈  and k

pd ∈  denote the process noise and 
the measurement noise, respectively. It is assumed that 1kw −  and 
nk are white, zero-mean, Gaussian noises, with covariance matrices 
denoted as Qk and Ck, respectively. It is also assumed that k 1W − and 

kn  are uncorrelated with each other.

Since kf (X ) is a nonlinear function, in extended Kalman filtering, 
it is linearized at k|k-1X

∧
, the prediction for Xk at time k−1. In particular, 

f ( kX ) is approximated by

                       (12)

where KH
∧

 is the Jacobin matrix of ( )f ⋅  evaluated at k|k-1X
∧

:

 

              (13)

At k = 0, the initial state estimate 0|0 0= XX
∧

 is a random vector 
with known mean [ ]0 0E Xµ = , and the initial covariance matrix is 

given by ( )( )0 0 0 0 0| 0   TP E X Xµ µ= − − 
  . The main steps in an 

extended Kalman filter are outlined next. The state prediction is given 
by

       

              (14)

For k ≥ 1, the prediction of state covariance matrix follows

 
              (15)

and the optimal gain matrix kK  is given by

Figure 2: Illustration of the problem setup for the tracking and estimation of 
a moving object.

e
i i i s s x im (t) = f (x , y , x (t), y (t), v ,R, 1, 2)+n (t),λ λ

T e
1 N s s x 1 2M(t) = [m (t) ··· m (t)]  = F (x (t), y (t), v ,R, , )+n(t),λ λ

e e e T
s s x 1 2 1 1 s s x 1 2 N N s s x 1 2F (x , y , v ,R, , ) [ f (x , y , x , y , v ,R, , )...f (x , y , x , y , v ,R, , )] ,λ λ λ λ λ λ

k|k-1 k k|k-1k kf (X ) f ( X )+H (X - X ),
∧ ∧ ∧

≈

( )
k X

k
k X

k

X
H .

X -1k|k

f
=

∧ ∂
=

∂ 

k|k-1 k-1|k-1k-1X = A X .
∧ ∧

T
k|k-1 k-1 k-1|k-1 k-1 k-1P  = A P A Q ,+

k k-1 k-1 k-1X = A X +w ,

k k kM  = f (X )+n .

( )( )
( ) ( )2 2

1 2

.
2 4

2
x s se

y 2 2 2
s s s s

2v R y-y x-x
v

((x-x ) (y-y ) ) x-x y-y
= −

− − λ − λ +



Citation: Abdulsadda AT. Cramer Rao Lower Bound CRB Shape Detection Method. 
SM Anal Bioanal Technique. 2017; 2(1): 1009.

Page 4/7

Gr   upSM Copyright  Abdulsadda AT

                       (16)

Finally, the estimates of the state and its covariance matrix are 
updated via

              (17)

                 (18)

where I denotes the identity matrix.

For our tracking and estimation problem, the dynamics of interest 
can be described as follows:

s s x 1x [k] = x [k-1]+v [k-1] +w [k-1],∆            (19)

s s y 2y [k] = y [k-1]+v [k-1] +w [k-1],∆          
 (20)

x 3v [k] = vx[k-1]+w [k-1],
     

              (21)

y y 4v [k] = v [k-1]+w [k-1],             (22)

5R[k] = R[k-1]+w [k-1],
 

              (23)

61[k] = 1[k-1]+w [k-1],λ λ             (24)

72[k] = 2[k-1]+w [k-1],λ λ             (25)

                                                 

              (26)

where ∆  is the sampling time, and 1 7w , ··· w   denote the process 
noises, which are assumed to be uncorrelated. The measurement 
equation is given by

         

              
(27)

where n[k] denotes the vector of measurement noises with 
uncorrelated components.

In this work, we propose a multiple-stage nonlinear filtering 
scheme, as illustrated in Figure. 3. In the first stage, five state 
components, (19) - (23), are estimated while assuming the shape 
parameters 1 0 2 0,= =λ λ . Correspondingly, the measurement equation 
for the first stage is obtained by plugging 1 0 2 0and= =λ λ  (27):

 

              (28)

In the second stage, the state estimate involves 1λ and 2λ  
(equation (24)), while the measurement equation is obtained from 
(27) by plugging in the state estimates from the first stage:

                      (29)

State estimation at each stage is then carried out following the 
general nonlinear filtering procedure, as outlined earlier.

There are two motivations for estimating the desired information 
in two cascaded stages. First, as discussed in [15], it is likely that 
a biological lateral line extracts the relevant information in a 
progressive manner. Second, the proposed scheme leads to reduced 
computational complexity because of the reduced dimensions for the 
state dynamics - for example, one only needs to invert 6 × 6 matrices 
instead of 7 × 7 matrices.

Simulation Results
Recursive information matrix

Generally, a nonlinear filtering problem does not have a close-
form analytical solution, and in all practical applications, nonlinear 
filtering is performed b y some sort of approximation. Despite the 

e
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absence of a closed-form solution, we would like to find the best 
achievable error performance for nonlinear filtering; to do so, 
a theoretical Cramer-Rao lower bound has been formulated for 
such problems. Consider the system which is described in (11), the 
recursive information matrix kJ for such system has been derived in 
[16] as

               (30)
 

where 

               (31)

 

Figure 3: Illustration of the n-stages filtering scheme.

k|K k|k 1k|K 1 k kX X K (M f (X ))
∧ ∧

−−= + −

kk|k k k|k 1P (I K H )P
∧

−= −

T T
1

k Kk k|k k k|k 1K P H (C H P H )
∧ ∧ ∧

−
−= +



Citation: Abdulsadda AT. Cramer Rao Lower Bound CRB Shape Detection Method. 
SM Anal Bioanal Technique. 2017; 2(1): 1009.

Page 5/7

Gr   upSM Copyright  Abdulsadda AT

is the Jacobian of f ( )⋅ evaluated at the true value of 
kX . 

Figure 4 shows the square root of the CRB, CRB , corresponding 
to the components of the state vector: (i) xs-coordinate, (ii) ys-
coordinate, (iii) size parameter R and (iv) shape parameter 1λ , for 
two-stage and one-stage schemes, respectively. These bounds are 
obtained as:

                       
(32)

It is clear from Figure. 4 that, a two-stage scheme yields smaller 
estimation errors than a one-stage scheme. Consequently, we will 
employ two-stage schemes in our estimation, the analytical derivation 
steps of the CBR is described in appendix A.

Simulation results on nonlinear filtering

Figure 5 illustrates the simulation setup. The lateral line system 
is placed parallel to the x-axis and centered at (10, 0) cm. It consists 
of 12 sensors, with the sensor-to-sensor separation of 2 cm. The 
ellipsoidal cylinder, with a shape parameter 2 1( 1.5cm)λ = λ = and 
a size parameter R = 2.5 cm, moves from left to right with a constant 
speed of 6 cm/s. The initial location of the moving object is (0, 7) 
cm, and the time duration for the movement is 1.667 s, resulting 
in a terminal location of (20, 7) cm. The initial state estimates are 

flow velocities (x-component) at all sensor sites, where a zero-mean, 
Gaussian noise with a variance of 2 2 2

m( 0.01cm / s )σ =  is added to 
each measurement.

It can be observed that the estimated object location quickly 
converges to the neighborhood of the actual location after a short 
transient period (less than 0.15 s). In addition, while the variance 
of the process noises does influence the transients, its impact on t 
he estimation performance at the steady state is not pronounced. 
The insensitivity of the estimation performance to the process noise 
variances is positive news, since it is difficult to precisely characterize 

Figure 4: CRB  for: (a) Moving object xs coordinate; (b) moving object ys 
coordinate; (c) size parameter R; (d) shape parameter 1λ .

Table 1: simulation results: estimated velocity, size parameter, and shape 
parameter under different process noise variances. Two-stage extended kalman 
filtering is used.

Parameter Actual Estimated (σ 2  = 0.1) (σ 2  = 0.3) (σ 2  = 0.5)

Velocity (cm/s) 6 6.22 6.35 6.44

Size R (cm) 2.5 2.34 2.41 2.32

Shape λ1 1.5 1.23 1.42 1.43

Shape λ2(cm) 1.5 1.26 1.46 1.45

set to be s,0|0 0.1x
∧

= cm, s,0|0y 5
∧

= cm, ˆ x,0|0v 4
∧

= cm/s, y,0|0v 1
∧

=  
cm/s, 0|0R 1

∧

= cm, and 1,0|0 0.1
∧

λ = cm. The sampling time D is 
chosen to be 0.01 s. Figure. 6 shows the simulated measurements of 

Figure 5: Simulation setup for tracking of a moving cylinder.

Figure 6: Simulated time trajectories of sensor measurements.

these noise variance values in practice. Table I summarizes the 
averages of the estimates for other parameters x 1(v , R and )λ , where 
each average is obtained by taking the mean of the estimated values 
over the period [0.33, 1.67] s. 

Conclusion
We investigate the problem of tracking a moving but non-

vibrating cylindrical object and estimating its size and shape using 
an artificial lateral line system. Instead of using pressure sensing as 
done in the literature for similar problems [15,17,18], we consider 
the measurement of flow velocities as is believed to be what is 
adopted in biological lateral lines. Based on a nonlinear analytical 

-1
kCRB(X [i]) = J [i, i], i = 1,2,3,4.
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model for the moving object-induced flow field, two-stage nonlinear 
filtering algorithms are proposed to estimate the location, velocity, 
size, and shape of the object. Using two-stage filtering instead 
of one stage is motivated partly by the progressive information 
extraction conjectured for biological lateral lines [15], and partly by 
computational efficiency. The approach is illustrated with simulation 
results, where a moving object is tracked and its shape parameter 
estimated.

In future work, we will try to verify the simulation results by 
doing experimental setup, where an artificial lateral line consisting of 
12 nano smart IPMC sensors will design and implement as prototype 
to track and estimate the size and the shape of robot like fish.

Appendix (A)
Based on the measurement equation (11), the likelihood function 

is given by

              (33)

Differentiating the log of the likelihood function twice, we get:-

 
      

              (34)

The Fisher information matrix is defined by ( )( )
( )

2

2

1 ;
,

np M X
E

X

 ∂
−  

∂  which is given by

 Where E[ ]⋅  is the expectation taken over all possible measurement 
M. the ith diagonal of the inverse of F, which is denoted by 1

i,iF− , 
provides a lower bound on the variance of the ith element of the state 
estimate X

∧

. Generally, Var 1
i,i(X) F

∧
−≥ .In our case we have four elements 

and F is just a 4×4 matrix. The Fisher information matrix can be 
expressed as T

11 12 12 22F [F ,F ,F ,F ]= , where the sub-matrix blocks F11, 
F12, and F22 are 2×2 matrices,

Where

and the Cramer-Rao bound is defined as 1F− , where 1F−  is given 
by

where 1
11 12 22 21J F F F F−= − . J is a 2×2 matrix given by

The CRBs for the estimates of sx  and ys  are given by 
1 1 2,2

1,1J | J | . J− −=  and 1 1
2,2 1,1J | J | . J− −=  respectively.

Specifically,

               
(35)

Acknowledgement

The author would like to thank professor Xiabo Tan, manger 
of Smart Micorsystem Lab. , Michigan State University (MSU), for 
guiding the author where this work can be considered as one direction 
of proposed future work of Abdulsadda PHD. Thesis.

References

1. Coombs S. Smart skins: Information processing by lateral line flow sensors. 
Autonomous Robots. 2001; 11: 255–261.

2. Liu C. Micromachined biomimetic artificial haircell sensors. Bioinsp Biomim. 
2007; 2: S162-S169.

( ) ( )

( )

( )

( ) ( )2

1 1

2

1 1

11 2

1 ,
i i iN N

I i
s s s

i iN iNI i
s s s

f f f
x x y

f f f
m y x y

F
σ

= =

= =

∂ ⋅ ∂ ⋅ ∂ ⋅    
Σ Σ        ∂ ∂ ∂    

∂ ⋅ ∂ ⋅   ∂ ⋅ Σ    Σ          

 
 =
 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

1

1 1
1

12 2

1 ,
i i i iN N

I I
s s

i i i iN N
I I

s s

f f f f
x R x

f f f f
m y R y

F λ

λ
σ

= =

= =

∂ ∂ ⋅ ∂ ⋅ ∂ ⋅     
Σ Σ          ∂ ∂ ∂ ∂     

∂ ⋅ ∂ ⋅ ∂ ∂ ⋅     
Σ Σ          ∂ ∂ ∂     

 
 =
  





( ) ( )

( )

( )

( ) ( )2

1 1
1

2

1 1
1 1

22 2

1 ,
i i iN N

I i

i iN iNI i

f f f
R R

f f f
m R

F λ

λ λ
σ

= =

= =

∂ ⋅ ∂ ⋅ ∂ ⋅    
Σ Σ        ∂ ∂ ∂    

∂ ⋅ ∂ ⋅   ∂ ⋅ Σ    Σ      ∂ ∂ ∂    

 
 =
 
 

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2
22 2 2 2

1

2 2 2 2
1 1

222 2 2 2
1

2

4

4

4

s
x

s
s s s s

s s s s s

s s s s

f x x
v R

x x x y y x x y y

x x x x y y x x y y

x x y y x x y y

λ

λ λ

λ


∂ ⋅ −= ∂  − − − − + − −


− − − − − − + − − − 

  − − − − + − −   

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2
22 2 2 2

1

2 2 2 2
1 1

222 2 2 2
1

2

4

4

4

s
x

s
s s s s

s s s s s

s s s s

f y y
v R

y x x y y x x y y

y y x x y y x x y y

x x y y x x y y

λ

λ λ

λ


∂ ⋅ − −= ∂  − − − − + − −


− − − − − − − − − − 

  − − − − + − −   

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2
1

22 2 2 2
1

2 ,
4

s s

x

s s s s

x x y yf
v R

R x x y y x x y y

λ

λ

 − − − −∂ ⋅  = −  ∂  − − − − + − − −
 

( )
( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )

2
22 2 2 2

1
1

22 2
1

22 2 2 2
1

1

4

2

4

x

s s s s

s s

s s s s

f
v R

x x y y x x y y

x x y y

x x y y x x y y

λ λ

λ

λ


∂ ⋅ = ∂  − − − − + − − −


− − − − − 
− − − − + − − −


( )
1 1

12 22
1 1 1 1

22 21 22 21 12

1 ,J JF F
F F J F I F J F

F
− −

− − − −

−−

+

 =   

1,1 1,2

2,1 2,2
,J J

J JJ  =  

( ) ( )1 1
1,1 2,2, .s sCRB x J CRB y J− −= =

22 1
i

i i2 2 20

( ) ( )f (X)11 (p(M;X))= (M - f (X))
X X

TN
i i

i
m

f X f Xn
X Xσ

−

=

 ∂ ∂∂∂     Σ −    ∂ ∂ ∂ ∂     

1

2 0

( ) ( )1 TN
i i

i
m

f X f XF
X Xσ

−

=

∂ ∂   = Σ    ∂ ∂   

( )21
0 i i2 2

1 1p(M;X) = M f (X)
2 2

N
i

m m

e
πσ πσ

−
=

 −
Σ − 

 

https://link.springer.com/article/10.1023/A:1012491007495
https://link.springer.com/article/10.1023/A:1012491007495
http://adsabs.harvard.edu/abs/2007BiBi....2..162L
http://adsabs.harvard.edu/abs/2007BiBi....2..162L


Citation: Abdulsadda AT. Cramer Rao Lower Bound CRB Shape Detection Method. 
SM Anal Bioanal Technique. 2017; 2(1): 1009.

Page 7/7

Gr   upSM Copyright  Abdulsadda AT

3. Coombs S, Braun CB. Information processing by the lateral line system. in 
Sensory Processing in Aquatic Environments, SP Collin and NJ Marshall, 
Eds. New York: Springer-Verlag. 2003; 122-138.

4. Pohlmann K, Atema J, Breithaupt T. The importance of the late ral line in 
nocturnal predation of piscivorous catfish. J Exp Biol. 2004; 207: 2971-2978.

5. Pitcher TJ, Partridge BL, Wardle CS. A blind fish can school. Science. 1976; 
194: 963-965.

6. Gardiner JM, Atema J. Sharks need the lateral line to locate or sources: 
Rheotaxis and eddy chemotaxis. J Exp Biol. 2007; 210: 1925-1934.

7. Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, et al. Distant touch 
hydrodynamic imaging with an artificial lateral line. Proceedings of the 
National Academy of Sciences. 2006; 103: 18891-18895.

8. Yang Y, Nguyen N, Chen N, Lockwood M, Tucker C, et al. Artificial lateral 
line with biomimetic neuromasts to emulate fish sensing. Bioinsp. Biomim. 
2010; 5: 016001.

9. Dagamseh AMK, Lammerink TSJ, Kolster ML, Bruinink CM, Wiegerink RJ, 
Krijnen GJM. Dipole-source localization using biomimetic flow-sensor arrays 
positioned as lateral-line system. Sensors and Actuators A. Physical. 2010; 
162: 355-360.

10. Sarles SA, Pinto P, Leo DJ. Hair cell sensing with encapsulated interface bi 
layers. in   Proceedings of Bioinspiration, Biomimetics, and Bioreplication, 
ser. Proceedings of SPIE. 2011; 7975: 797509.

11. Abdulsadda AT, Tan X. Underwater source localization using an IPMC-based 
artificial lateral line. in Proceedings of the 2011 IEEE International Conference 
on Robotics and Automation, Shanghai, China. 2011; 447–452.

12. Pandya S, Yang Y, Jones DL, Engel J, Liu C. Multisensor processing 
algorithms for underwater dipole localization and tracking using MEMS 
artificial lateral-line sensors. EURASIP Journal on Applied Signal Processing. 
2006; 2006: 8. 

13. Abdulsadda AT, Zhang F, Tan X. Localization of source with unknown 
amplitude using IPMC sensor arrays. in Proceedings of Electro active 
Polymer Actuators and Devices (EAPAD) XIII, ser. Proceedings of SPIE, Y. 
Bar-Cohen, Ed. 2011; 7976: 797627.

14. P RL, Incompressible flow. New York: Wiley, 1985.

15. Bouffanais R, Weymouth GD, Yue DKP. Hydrodynamic object recognition 
using pressure sensing. Proc. R. Soc. A. 2011; 467: 19-38.

16. B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter.   
London: Artech House. 2004.

17. Fernandez VI, Maertens A, Yaul FM, Dahl J, Lang JH, Triantafyllou MS, et 
al. Lateral-line-inspired sensor arrays for navigation and object identification. 
Mar Technol Soc J. 2011; 45: 130-146.

18. Venturelli R, Akanyeti O, Visentin F, Ježov J, Chambers LD, Toming G. 
Chambers, et al. Hydrodynamic pressure sensing with an artificial lateral line 
in steady an d unsteady flows. Bioinspir Biomim. 2012; 7: 036004.

https://books.google.co.in/books?id=XG7OBQAAQBAJ&pg=PA151&lpg=PA151&dq=S.+Coombs+and+C.+B.+Braun.+%E2%80%9CInformation+processing+by+the+lateral+line+system,%E2%80%9D+in+Sensory+Processing+in+Aquatic+Environments,+S.+P.+Collin+and+N.+J.+Marshall,+Eds.+New+
https://books.google.co.in/books?id=XG7OBQAAQBAJ&pg=PA151&lpg=PA151&dq=S.+Coombs+and+C.+B.+Braun.+%E2%80%9CInformation+processing+by+the+lateral+line+system,%E2%80%9D+in+Sensory+Processing+in+Aquatic+Environments,+S.+P.+Collin+and+N.+J.+Marshall,+Eds.+New+
https://books.google.co.in/books?id=XG7OBQAAQBAJ&pg=PA151&lpg=PA151&dq=S.+Coombs+and+C.+B.+Braun.+%E2%80%9CInformation+processing+by+the+lateral+line+system,%E2%80%9D+in+Sensory+Processing+in+Aquatic+Environments,+S.+P.+Collin+and+N.+J.+Marshall,+Eds.+New+
https://www.ncbi.nlm.nih.gov/pubmed/15277552
https://www.ncbi.nlm.nih.gov/pubmed/15277552
https://www.ncbi.nlm.nih.gov/pubmed/982056
https://www.ncbi.nlm.nih.gov/pubmed/982056
https://www.ncbi.nlm.nih.gov/pubmed/17515418
https://www.ncbi.nlm.nih.gov/pubmed/17515418
http://www.pnas.org/content/103/50/18891.full
http://www.pnas.org/content/103/50/18891.full
http://www.pnas.org/content/103/50/18891.full
http://iopscience.iop.org/article/10.1088/1748-3182/5/1/016001/meta
http://iopscience.iop.org/article/10.1088/1748-3182/5/1/016001/meta
http://iopscience.iop.org/article/10.1088/1748-3182/5/1/016001/meta
http://www.sciencedirect.com/science/article/pii/S0924424710000798
http://www.sciencedirect.com/science/article/pii/S0924424710000798
http://www.sciencedirect.com/science/article/pii/S0924424710000798
http://www.sciencedirect.com/science/article/pii/S0924424710000798
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=728796
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=728796
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=728796
http://ieeexplore.ieee.org/document/5980545/
http://ieeexplore.ieee.org/document/5980545/
http://ieeexplore.ieee.org/document/5980545/
http://www.ifp.illinois.edu/~jones/papers/JASP_2006.pdf
http://www.ifp.illinois.edu/~jones/papers/JASP_2006.pdf
http://www.ifp.illinois.edu/~jones/papers/JASP_2006.pdf
http://www.ifp.illinois.edu/~jones/papers/JASP_2006.pdf
http://adsabs.harvard.edu/abs/2011SPIE.7976E..27A
http://adsabs.harvard.edu/abs/2011SPIE.7976E..27A
http://adsabs.harvard.edu/abs/2011SPIE.7976E..27A
http://adsabs.harvard.edu/abs/2011SPIE.7976E..27A
https://books.google.co.in/books?id=7ZrDCgAAQBAJ&pg=PA42&lpg=PA42&dq=R.+Bouffanais,+G.+D.+Weymouth,+and+D.+K.+P.+Yue.+%E2%80%9CHydrodynamic+object+recognition+using+pressure+sensing,%E2%80%9D+Proc.+R.+Soc.+A.+2011;+467:+19%E2%80%9338&source=bl&ots=h5QCghu5
https://books.google.co.in/books?id=7ZrDCgAAQBAJ&pg=PA42&lpg=PA42&dq=R.+Bouffanais,+G.+D.+Weymouth,+and+D.+K.+P.+Yue.+%E2%80%9CHydrodynamic+object+recognition+using+pressure+sensing,%E2%80%9D+Proc.+R.+Soc.+A.+2011;+467:+19%E2%80%9338&source=bl&ots=h5QCghu5
http://us.artechhouse.com/Beyond-the-Kalman-Filter-Particle-Filters-for-Tracking-Applications-P1376.aspx
http://us.artechhouse.com/Beyond-the-Kalman-Filter-Particle-Filters-for-Tracking-Applications-P1376.aspx
http://www.ingentaconnect.com/content/mts/mtsj/2011/00000045/00000004/art00015
http://www.ingentaconnect.com/content/mts/mtsj/2011/00000045/00000004/art00015
http://www.ingentaconnect.com/content/mts/mtsj/2011/00000045/00000004/art00015
https://www.ncbi.nlm.nih.gov/pubmed/22498729
https://www.ncbi.nlm.nih.gov/pubmed/22498729
https://www.ncbi.nlm.nih.gov/pubmed/22498729

	Title
	Abstract
	Flow Model and Problem Formulation
	Extended Kalman Filter
	Simulation Results
	Recursive information matrix
	Simulation results on nonlinear filtering

	Conclusion
	Appendix (A)
	Acknowledgement
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

