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Introduction
Amine Oxidases (AOs) are the enzymes, which are responsible for the oxidative deamination 

of mono, di, tri and more than three units containing amines. There are two categories of AO’s 
that are differentiated by the cofactors present in them: one contains Flavin Adenine Dinucleotide 
(FAD) and the other contains copper. Copper containing AO creates a disulphide-linkage to form 
homodimer whereas FAD containing AO [1-2] is an oxidoreductase enzyme that contains 8α-S-
cysteinyl covalently linked with FAD as redox cofactor in the outer mitochondrial membrane of 
neuronal, glial and peripheral regions [3-6]. The catalytic pathway for free radical formation by 
MAO is shown in Figure 1 [7-9]. The monoamine oxidase family members share structural features, 
including a conserved FAD-binding domain and a lysine-water-flavin triad. The substrate-binding 
sites, however, reflect the different substrates. In each case, there is evidence that the deprotonated 
amine is the functional substrate. While, nucleophilic and radical mechanisms have been proposed 
for oxidation of amines by MAO, the accumulation of structural and mechanistic evidence supports 
a common hydride transfer mechanism for all members of the MAO family. 

MAO (Mitochondrial Monoamine Oxidases) exists in two types of isoforms MAO-A and 
MAO-B [10]. The amino acid sequences of both the forms are 70% identical or homologous [11]. 
They contain the pentapeptide sequence Ser-Gly-Gly-Cys-Tyr which binds to the FAD cofactor 
covalently in both the isoforms [12,13]. 

MAO-B is more abundant in brain as compared to MAO-A, which is present mainly in the 
peripheral regions such as intestine [14]. Therefore, MAO-A is mainly involved in the breakdown of 
amino acids like tyramine and hence its inhibition lead to an increased levels of tyrosine and other 
indirect sympathomimetic amines in the systemic circulation, releasing nor-adrenaline that leads to 
chase reaction as shown in Figure 2  [15-16].
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Abstract

Monoamine Oxidise-B is an enzyme which is present in mitochondrial outer membrane. It catalyzes the 
oxidative deamination of biogenic and xenobiotic amines and plays an important role in the metabolism of 
neuroactive and vasoactive amines in the central nervous system and peripheral tissues. In this review, we 
focused to report the synthesis and structure to activity relationship of substituted thiazolyl hydrazones which are 
selectively inhibitors of MAO-B enzyme.

Figure 1: Catalytic pathway for free radical formation by MAO enzyme.
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Figure 2: Mechanism of tyramine, the NE release and metabolism after 
MAO -A inhibition.

Figure 3: SAR of 2-thiazolyl hydrazone as MAO-A and MAO-B inhibitors.

Table 1: Some important reversible and irreversible MAO inhibitors.

Structure Name Selectivity

MAO reversible inhibitors
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Moclobemide [17(d)] MAO-A

MAO irreversible inhibitors

Propargyline derivatives
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CH3Cl
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Clorgyline [17(e)] MAO-A

N
C C H

H

L-Deprenyl (selegiline) 
[17(f)] MAO-B

N
CH3

Pargyline [17(f)] MAO-B

Table 2:  Structure and MAO-A and MAO-B inhibitory activity of 
2-methylcyclohexylidene-(4-arylthiazol-2-yl) hydrazones 1-9.

N

S
N

N

H

R

CA R
IC50a (μM)

Selectivity Ratio
hMAO-A hMAO-B

1 H 41.23±3.96b 0.711±0.037 58

2 4-Cl 35.22±1.81 13.12±0.51 2.7

3 4-F 43.55±3.61b 0.203±0.008 2.7

4 2,4-Cl 44.70±5.23 26.81±2.74 1.7

5 2,4-F 37.95±3.41b 0.014±0.000 1.7

6 4-CH3
c 0.014±0.009 >701d

7 4-OCH3 2.76±0.17b 2.37±0.14 1.2

8 4-NO2
c 0.032±0.002 >3693

9 4-CN 31.03±2.44 0.026±0.001 1183

aEach IC50 value is the mean ± SEM from five experiments (n=5).
blevel of statistical significance: P < 0.01 versus the corresponding IC50 values 
obtained against hMAO-B, as determined by ANOVA/Dunnett’s test.
cValues obtained under the assumption that the corresponding the compounds 
IC50 against hMAO-A is the highest concentration tested (100 μM).
dinactive at 100 μM (highest concentration tested), at higher concentration the 
compounds precipitate.

There are several known reversible and irreversible MAO 
inhibitors as shown in Table 1 [17, 18]. 

Structure to activity relationship
This review focus on the Structure-Activity Relationship (SAR) 

studies of substituted thiazolyl hydrazones as MAO-A and MAO-B 
inhibitors, which are present in chronological order to demonstrate 
sequential progress in this area (Figure 3).
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In order to further explore optimum substitution patterns, a 
majority of substituted thiazolyl-hydrazone analogs were prepared 
and evaluated as MAO inhibitor in the presence of kynuramine as 
a substrate.

A new series of 2-Methyl Cyclohexylidene (4-arylthiazolyl-2-yl) 
Hydrazones (compound 1-9) have been synthesized by introducing 
the chiral cyclohexylidene moiety for their ability to inhibit the 
activity of human MAO-A and MOA-B.

In humans, MAO-B inhibitors are used in the management of 
Parkinson’s and Alzheimer disease, while MAO-An inhibitors are 
proved to be antidepressant and antianxiety agents. Preliminary SAR 
studies revealed that racemic analogues 1-9 (Table 2) are selective as 
well as biological active for both isoenyzmes hMAO-A and hMAO-B. 

On basis of the molecular modelling study, the new scaffold of 
thiazole hydrazones are  designed by doing the substitution on fourth 
and fifth position of the thiazole ring to make a (4,5-disubstituted-
thiazole-2-yl) hydrazones which exhibit good selectivity and 
biological activity. Detailed description is shown in Table 3, [19-21].

Some of the substituted thiazolyl hydrazones were synthesised 
and evaluated for MAO Inhibitory activity (Figure 4). In this series 

substitution was done on C4 position of the thiazole ring by various 
electron withdrawing and releasing groups [22] (Table 4).

A new series of [4-(3-methoxyphenyl)-thiazol-2-yl] hydrazine 
derivatives were synthesized and screened for their MAO inhibitory 
activity. The detailed description is shown in Table 5. 

Halogenated series shows interesting activity and great selectivity 
towards the hMAO-B as expressed in baculo virus infected insect cells 
(BTI-TN-5B1-4). The importance of water molecules in the binding 
site was also evaluated as it plays an important role in mediating 
the protein-ligand interactions. The entire series of the synthesized 
compounds were inactive towards MAO-A below 100µM, 
suggesting (Arylidene-2-(4-(4-Halophenyl Thiazol-2-yl Hydrazine 
as a promising candidate scaffold for the design of selective MAO-B 
inhibitors. The substitution of the phenyl moiety at position 2 of 
thiazole modulates the activity within a series [22] Table 6.

A new series of 4-Substituted-2-(2-(1-(Pyridin-4-yl) ethylidene) 
hydrazinyl) thiazole was synthesized and evaluated for MAO 
inhibitory activity. In the series, only six compounds were found to 
be most active but all these have less activity towards the hMAO-A 
enzyme [22-23]. It was concluded that compounds have affinity for 
both isoforms Table 7.

Table 3: Structure as well as MAO-A & MAO-B inhibitory activity of (4, 5-aliphatic disubstituted-thiazol-2-ly) hydrazones 10-27.

CA R R1 R2 R3

IC50 (µM)

hMAO-Ab hMAO-B(µM) Ratio

10 CH3 CH3 Phenyl CH3 2.55±0.17b 5.28±0.36 2.08

11 CH3 CH2CH3 Phenyl CH3 1.55±0.07c 1.53±0.21 1

12 CH3 (CH2)2CH3 Phenyl CH3 2.52±0.13c 2.31±0.08 0.9

13 CH3 CH2CH3 Phenyl CH3 1.65 ± 0.09 2.45 ± 0.14 1.49

14 CH3 CH2CH(CH3 )2 Phenyl CH3 2.4 ± 0.13c 2.78 ± 0.12 1.16

15 CH3 CH2CH3CH=CH2 Phenyl CH3 6.97±0.43c 8.85±0.45 1.27

16 CH3 (CH2)4CH3 Phenyl CH3 3.69±0.11b 6±0.21 1.64

17 CH3 (CH2)3CH3 Phenyl CH3 4.13±0.22 4.78±0.17 1.16

18 CH2CH3 (CH2)5CH3 Phenyl CH3 3.91±0.19b 3.75±0.12 1.04

19 CH3 CH3 Napthalen-2-yl H 1.56±0.07b 3.55±0.29 2.27

20 CH3 CH2CH3 Napthalen-2-yl H 1.74±0.08c 2.65±0.19 1.52

21 CH3 (CH2)2CH3 Napthalen-2-yl H 1.81±0.07c 3.11±0.16 1.72

22 CH2CH3 CH2CH3 Napthalen-2-yl H 1.86±0.06 2.32±0.03 1.25

23 CH3 CH2CH3(CH3) Napthalen-2-yl H 2.31±0.16c 3.56±0.06 1.54

24 CH3 CH2CH3(CH3) Napthalen-2-yl H 1.37±0.08b 3.94±0.25 2.86

25 CH3 (CH2)4CH3 Napthalen-2-yl H 2.45±0.12 15.96±0.45 6.67

26 CH2CH3 (CH2)3CH3 Napthalen-2-yl H 2.93±0.12 3.76±0.13 1.28

27 CH3 (CH2)5CH3 Napthalen-2-yl H 15.48±0.99b D <6.25c
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Table 4: Structure as well as MAO-A and MAO-B inhibitory activity of                  
(4-aryl-thiazol-2-yl) hydrazones 28-40.

 

N

SN
H

N

R1

n

R

n=1or 2

CA R R1

IC50 (µM)
Selectivity ratio

hMAO-B hMAO-B

28 Cyclopentyl H 7883±91* 296±7 27

29 Cyclopentyl 4-Cl 7160±640* 262±8 27

30 Cyclopentyl 4-F 4443±212* 40±0.9 111

31 Cyclopentyl 2, 4- Cl 54,507±4123* 284±11 192

32 Cyclopentyl 4-NO2 344±22* 94±3 4

33 Cyclopentyl 4-CN 644±21* 221±2 3

34 Cyclohexyl H 48,351±1433* 116±5 417

35 Cyclohexyl 4-Cl 2911±171* 211±7 14

36 Cyclohexyl 4-F 1752±21* 4±0.2 438

37 Cyclohexyl 2, 4- Cl N.E 202±16 495

38 Cyclohexyl 2, 4-F 45754±143* 652±22 70

39 Cyclohexyl 4-CH3 23371±324* 3689±353 6

40 Cyclohexyl 4-OCH3 7509±213** 11956±131 0.6

*p<0.01 or **p<0.01 versus the corresponding IC50 values obtained against 
hMAO-B, as determined by ANOVA/Dunnett’s. N.E=inactive at 100 µM 
(highest concentration tested). bValue obtained under the assumption that the 
corresponding IC50 against hMAO-A is the highest concentration tested (100 µM).

Figure 4: SAR of (4-aryl-thiazol-2-yl) hydrazones as MAO-A and MAO-B 
inhibitors.

** Inactive at 100 µM (highest concentration tested). 

***One hundred micromolars inhibits the corresponding hMAO activity by 
approximately 40-50 %. At higher concentration the compound precipitate.

# Values obtained under the assumption that the corresponding IC50 against 
hMAO-B is the highest concentration tested (100 µM).

CA X

IC50 (µM)

Selectivity ratio
hMAO-A hMAO-B

41 4.43±0.22 5.07±0.13 0.87

42 591.80±23.13 1.06±0.07 0.56

43 836.21±36.58 26.64±0.81 31

44

O
NN

H

O

Cl

1.45±0.04 231.02±9.61 6.3

45
O

H
342.88±15.62 6.78±0.25 0.051

46
O

CH3

333.05±16.08 1.68±0.06 0.2

47 S H 457.73±20.35 493.83±16.32 0.93

48 N

H

537.66±27.35 2.91±0.13 0.18

49

H

3.64±0.06 *** <0.036#

50

H3C

*** **

Table 5: Structure as well as MAO-A and MAO-B inhibitory activity of 
[4-(3-methoxyphenyl)-thiazol-2-yl] hydrazine 41-50.
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Table 6: Structure as well as MAO-B inhibitory activity of 2-(4-(4-halophenyl 
thiazol-2-yl hydrazine 51-56.

**Inactive at 100 µM (higher concentration tested). At higher concentration the 
compounds precipitate. 
***100 µM inhibits the corresponding MAO activity by approximately 40-45%. At 
higher concentration the compounds precipitate.

Conclusion
Based on our interest on heterocyclic chemistry and asymmetric 

synthesis [24-26], it was concluded that the hybrid scaffold of this 
series of thiazolyl-hydrazones derivatives could be promising for the 
discovery of new lead compounds as adjuvants for the treatment of 
neurodegenerative diseases. A variety of thiazolyl-hydrazones with 
MAO inhibitory activity may be used in the treatment of various 
CNS diseases such as depression, anxiety or Parkinson. A number 
of researches explored SAR of thiazolyl-hydrazones as well as 
conformation and orientation requirements for binding site through 
simulation and QSAR studies. Additionally, recognition of a rational 
picture towards the substitutions responsible for its potency and 
toxicity may be a future framework in this area.
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