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Introduction
 A bit of history

Despite significant steps have been taken by neuroscience and the knowledge of 
pharmacodynamics have been fine-tuned [1], we do not have a comprehensive view of what happens 
to the brain during General Anesthesia (GA). Thus, in 2005, Science considered understanding 
anesthetic mechanisms to be one of the important unsolved mysteries of modern medicine [2]. As 
a consequence, there has always been great uncertainty in Depth of Anesthesia (DOA) monitoring. 
In 1937, Arthur E. Guedel gave the classic description of clinical signs of ether anesthesia, including 
4 stages: analgesia, delirium, surgical anesthesia and respiratory paralysis (till death) [3]. In 1954, 
Joseph F. Artusio further divided the first stage in Guedel’s classification into three planes: no 
amnesia and analgesia; complete amnesic but only partial analgesia; complete analgesia and amnesia 
[4]. This is the history of DOA clinical monitoring. However, until a few years ago to determine the 
lightening of DOA, anesthetists exploited only a series of physical signs of the patient, including 
sudden hypertension, tachycardia, sweating, tearing or mydriasis [5]; indeed during the years, while 
the research enhanced standard monitoring, like pulse oximeter, electrocardiographic monitor, 
capnograph, and spirometer [6], assessment of DOA with specific instrumental tools was still a 
serious problem (Figure 1).

In 1984, Evans et al., [7] speculate that the activity of the lower esophagus could be a useful 
guide to the adequacy of anesthesia status because, as they stated, deepening anesthesia resulted in 
progressive suppression of lower esophageal contractility. Nevertheless, the groundlessness of this 
technique was quickly proven [8]. The same Evans proposed a scoring system called the ‘patient 
response to surgical stimulus score’, based on hemodynamic parameters (pressure and pulse rate), 
sweating and tearing [9]. As well demonstrated, this score is a poor indicator of DOA, in as much 
as hemodynamic responsiveness to noxious stimuli does not necessarily signify awareness, nor does 
lack of hemodynamic changes guarantee unconsciousness [10].

Because the actions of general anesthetics impact the brain’s electrical activity, the possibility 
of analyzing data reflecting specific changes in the Electroencephalogram (EEG), could be a 
good way forward for DOA monitoring. Thus, in 1994, Sigland Chamoun described on the pages 
of Journal of Clinical Monitoring the Bispectral (BIS) analysis as a novel measure of the level of 
consciousness during general anesthesia [11]. The calculated BIS index was a statistical index based 
on a combination of time, frequency domain, and high-order spectral subparameters. It reflected 
the awake state, providing the activity of brain, ranged from 0 to 100 (40~60: adequate general 
anesthesia; under 40: deep hypnotic state).

Because the Anesthesia Awareness (AA) phenomenon has historically been the mean fear in 
anesthesiology, it seemed to have discovered the philosopher’s stone of the anesthesia monitoring. 
Thus, BIS was initially considered the best tool for monitoring cerebral activity during anesthesia 
[12]. However, some scientists began to doubt the effectiveness of BIS, and Avidan et al., in a capital 
study on the topic, reported the same incidence of AA independently from BIS monitoring [13]. 
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Abstract

Until a few years ago to determine the depth of anesthesia, the anesthetists exploited only a series of physical 
signs of the patient. In 1994, Sigland Chamoun described a novel measure of the level of consciousness during 
general anesthesia: the Bispectral (BIS) analysis. It was the beginning of a revolution in anesthesia monitoring, 
indeed during the last 15-20 years a number of EEG-based technologies have become commercially available. 
Unfortunately, none of these technologies has definitively solved the problem of the anesthesia awareness, thus 
assessment of depth of anesthesia is still a serious problem. Through these considerations this work focuses on 
new perspectives in brain monitoring.
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The Avidan’s study also found that patients can become aware even 
when BIS values are within the target range (i.e., 40 to 60), and thus 
concluded that the BIS monitoring should not be used as part of 
standard practice of anesthesia [13]. It was the beginning of a hard 
fought battle on the pages of scientific journals, and according to 
Lang, today the BIS monitor has become the most controversial 
medical device in anesthesiology [14].

The current status

BIS monitor was the first Electroencephalography (EEG) - DOA 
monitor. It is the most widely used system to assess the monitoring 
of DOA, nevertheless during the last 15-20 years a number of EEG-
based technologies have become commercially available. In addition 
to BIS, and based on different algorithms, there are the E-Entropy 
(previously known as M-Entropy) and the Narcotrend. The Entropy 
system was introduced by the Datex-Ohmeda Company in 2003 [15]. 
The founding principle behind this theory is that the irregularity 
within an EEG signal decreases with increasing brain levels of 
anesthetics. It uses a specific algorithm to process EEG and frontal 
electromyography data to produce two values that indicate the depth 
of anesthesia. The first value, response entropy, is based on both EEG 
and frontal electromyography signals and provides an indication 
of the patient’s responses to external stimuli and may signal early 
awakening. The second value, state entropy, is a stable parameter 
based on EEG and may be used to assess the hypnotic effect of 
anesthetic agents on the brain [16].

Narcotrend has been developed at the University Medical School 
of Hannover, Germany and its algorithm is based on old studies on 
cerebral states during sleep [17]. The raw EEG signal is recorded 
by a single or double-channel. After a Fourier transformation, the 
algorithm state six stages of anesthesia and a series of sub stages. Less 
common DOA monitors are the Cerebral State Index, the Patient 
State Index and Neuro SENSE.

What is the clinical effectiveness and cost-effectiveness of EEG-
based technologies compared with standard clinical monitoring? 
A significant systematic review of Shepherd and colleagues 
demonstrated that the impact of the technologies on reducing the 

incidence of AA is limited. However, the authors concluded that 
the use of DOA monitoring can reduce the consumption of general 
anesthetic drugs [18].

Unfortunately, none of these technologies has definitively 
solved the problem of the AA. Thus, the current status is that EEG 
devices can be used in conjunction with observation of clinical 
signs and instrumental parameters (i.e. the End-tidal anesthetic gas 
concentrations) to titrate anesthetic dose, especially in particular 
clinical situation, like burns [19], as well as pediatric patients with 
congenital disease [20] or during the sedation even in children [21] 
and in dentistry [22].

Expert opinion suggests that anesthetists primarily use clinical 
signs with EEG values as an additional source of information. If there 
is a difference between them the priority must be given to the clinical 
signs [18].

Auditory evoked potentials and combination of parameters

A field of research in brain monitoring of anesthesia is the study 
of the Auditory Evoked Potentials (AEP). The rationale is that while 
BIS value is an index of hypnosis, AEP shows response to stimuli. 
The BIS and AEP measure different aspects of brain activity. In other 
words, BIS refers to cortical EEG, while AEP is the expression of 
the subcortical activity. In an attempt to combine the two aspects 
of the brain activity some authors have been developed a specific 
index, the Composite Auditory Evoked Potentials Index (cAAI), 
which uses both cortical EEG and AEP [23]. This composite index 
was considered a measure of overall balance between noxious 
stimulation, analgesia, and hypnosis. Nevertheless, the results of the 
studies are contradictory. While Horn et al., [24] demonstrated that a 
combination of EEG and AEP parameters can be used to differentiate 
degrees of anesthetic effects over a wide range of hypnosis, from 
the conscious state to deep anesthesia, however Nishiyama showed 
in propofol-fentanyl anesthesia that AEP alone might be better to 
discriminate DOA than cAAI and BIS [25]. The same author showed 
that cAAI was inferior to AAI and BIS to discriminate different 
anesthetic effect in a sevoflurane anesthesia, and he concluded that 
the cAAI had larger inter-individual variation than the AAI and BIS 
[26].

For these reasons the use of AEP (and derived indices) is not 
universally spread. Nevertheless, recently there is a growing interest 
on the impact of auditory perception and auditory information 
processing for the genesis of the AA phenomena. So, according to 
Dong et al., conscious and subconscious auditory processing during 
GA could be prevented using auditory evoked potential, especially 
the mid-latency auditory evoked potentials [27].

The main limitations of DOA monitoring are that various 
physiological factors influence EEG, such as age, gender, low body 
temperature, acid base imbalances, low blood glucose, or cerebral 
ischemia. Thus, scientific research is enabling the development of 
more reliable technologies based on the analysis and processing of 
data of brain activity. 

The ideal DOA monitor

According to Jagadeesan et al., [28] an ideal DOA monitor 
would have several specific attributes. For example, it should have a 
rapid response time without any delay, and its function should not 

Figure 1: Depth anesthesia monitoring (1937-2015).
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be altered by artifacts and drugs. However, the main feature of an 
ideal device for monitoring DOA is its ability to function according 
to the neurophysiological bases of consciousness (and anesthesia). It 
is well known that the state of consciousness requires connectivity 
among various brain regions, and a transition in the anesthesia status 
involves a loss of connectivity [29]. So, an ideal DOA monitor would 
have good spatial resolution and would target several brain regions, 
like the frontal cortex, the posterior cortical regions, subcortical 
areas and deep brain structures, like the thalamus and hippocampus. 
Furthermore, this device should be economic, easy to use and 
interpreter, safe, non-invasive and reliable, as well as suitable for 
every types of general anesthesia (intravenous or inhaled) and for 
all anesthetics. Since a DOA device is designed with the purpose 
of monitoring the impact of anesthetics on consciousness, it must 
suggest the exact dosage of anesthetic agents (Table 1).

Future directions for research in the field of brain 
monitoring during anesthesia

Nowadays, we are witnessing a rapid evolution of the brain 
monitoring EEG-based techniques [30]. The right way is the research 
on the neurophysiological bases of consciousness, as well as the 
mechanisms underlying anesthesia-induced Loss of Consciousness 
(LOC). In this direction the studies of Boly et al., [31] on the spectral 
EEG changes after propofol administration are very important. These 
evidences underline the importance of recurrent corticocortical 
communication in the maintenance of consciousness, suggesting 
a direct effect of anesthetics on cortical dynamics. Indeed, if it is 
obvious that the anesthetic effect is realized through the ligand-
receptors interacting in different brain areas, it remains to be 
analyzed the exact physical mechanism (or operating mechanism) of 
the general anesthetics, namely the neural correlates of anesthetic-
induced unconsciousness. In other words, the understanding of the 
physiological mechanisms by which the anesthetics interfere with 
cortical and subcortical signals is the key to develop one or more 
accurate algorithms for DOA monitoring.

For instance Purdon and the Emory Brown’s team [32] published 
their fascinating research explaining that EEG pattern (and its 
changing) is indicative in real time of the patient transaction from 

consciousness to the anesthesia status. Moreover, the analysis 
of the tracks has allowed to identify some characteristic trends; 
in particular, the LOC is marked by an increase of the waves of 
low frequency (less than 1 herz) associated with a decrease in the 
coherence of the oscillations of the alpha occipital area (an index of 
the synchronization of the neuronal activation in this region of the 
brain), and to the appearance of oscillations alpha consistent in the 
frontal area. The changes of cerebral activation were reversed in the 
phase of recovery of consciousness. These EEG markers represent 
specific ‘signatures’ to precisely trace the transitions to and from the 
consciousness in GA. The Brown’s methodology is a combination 
of likelihood, Bayesian, state-space, time-series and point process 
approaches, used to develop statistical methods and signal-processing 
algorithms for neuroscience data analysis. This field of study is also 
a brilliant example of transactional research, involving experts in 
functional magnetic resonance imaging, EEG, neurophysiological 
recordings, and researchers experienced in microdialysis methods, as 
well as in statistic and mathematical [33].

Conclusion
Measuring DOA remains one of the most controversial and 

subjective aspect of modern anesthesia. Is it possible integrating 
the new derived EEG markers into strategies for patient monitoring 
during GA? We hope that these technologies are perfected and 
soon large-scale distributed to permanently solve the AA problem. 
Furthermore, in addition to the AA, a reliable brain monitoring could 
help to avoid other significant clinical manifestations, including the 
emergence delirium in children, the adverse developmental effects 
in neonates and infants, and the wide spectrum of postoperative 
cognitive disorders in the elderly.
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