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Introduction
Cerebral Aneurysm (CA) is a cerebrovascular disorder in which weakness in the wall of a 

cerebral artery or vein causes a localized dilation or ballooning of the blood vessel [1]. Mostly, they 
produce at the bifurcation site of the large arteries and specifically in the Willis circle and those 
arteries which feed that. More than 85% of the aneurysms are placed in the anterior side of the 
blood circulatory system [2]. Furthermore, almost 15% of the aneurysms are placed in the posterior 
side of the Willis circle which ranked within the most vulnerable site of the basilar arteries [3,4]. 
The most common site for an arterial aneurysm is the abdominal aorta. A true aneurysm results 
from formation of a sac by the arterial wall with at least one unbroken layer [5]. As pointed out, 
aneurysm can be produced because of weakness of the arterial wall. As a result of that, the blood 
can pour out and fills the space around the artery and, finally, trigger hematoma [6]. Aneurysms can 
be distinguished according to their morphological characteristics. One of the most usual forms of 
the aneurysms is the one which named Congenital or Berry. This aneurysm seems like a seed which 
via a neck-like structure connects to the arteries [7]. The fusiform aneurysm is a spindle-shaped 
aneurysm. It is also a localized dilation of an artery in which the entire circumference of the vessel is 
distended. The result is an elongated, tubular, or spindle-like swelling. A giant intracranial aneurysm 
is defined as one larger than 2.5 cm in diameter. Treatment of large (2-2.5 cm) and giant aneurysms 
has traditionally been associated with a higher morbidity and mortality than smaller lesions [8,9]. 
Since the main reasons of initiation of the disease have not been well understood, there is still no 
comprehensive understanding for that. So far many researchers investigated the hemodynamic of 
the aneurysms, including blood pressure, velocity of the blood flow, shear stress of the arterial wall, 
in order to figure out the origination of the disease [10,11]. Eppinger was the first one who indicated 
that a weakness in the interior layer of the arterial wall leads to aneurysm [12]. Since the arterial wall 
is ranked within the soft biological tissues [13], it is intricate to have a precise mechanical model to 
define their behavior in the body. In addition, it is not possible to investigate the hemodynamics of 
the blood flow in an aneurysm artery in vivo [14]. Therefore, the application of modeling software, 
i.e., ABAQUS would pave the way to get the results as close as possible to the real condition of the 
human body [15]. However, it is obvious that the value of the results depend on the input data, such 
as mechanical behavior of the arterial wall as well as the blood flow [16,17]. 

Me, et al. [8] performed a numerical study to simulate a Three-Dimensional (3D) structure of 
a cerebral aneurysm using Magnetic Resonance Imaging (MRI). The structure of the aneurysm can 
be fall into different ones, including sphere, ellipsoid, and hemisphere. Parlea, et al. [18] employed a 
new pretty simple method to address the shape and size of the aneurysm in an artery wall.
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Abstract

The Fluid-Structure Interaction (FSI) computational method is in arising in the field of biomechanics. One of 
the most applicable problems in this area is the interaction of solid and fluid in the blood vessel. It may also have 
implication to understand the complexity of arterial diseases to figure out the interaction of fluid and arterial wall. 
So far many studies have been carried out to compute the stress and deformations of the blood in a cerebral 
aneurysm artery. Dynamic behavior of the blood in an artery would pave the way to understand the growth, 
rupture, and curing of the cerebral aneurysm. Therefore, in this study the dynamic behavior of the blood flow 
and its interaction with the basilar arterial wall was simulated using FSI approach. Thereafter, the von Mises 
stress, shear stress as well as deformations of both the arterial wall and blood were computed and compared 
to that of the healthy one. The mechanical behavior of the arterial wall was considered to be elastic, isotropic, 
homogenous, and incompressible, and the behavior of the blood flow was assumed to be laminar, Newtonian, 
and incompressible. The results of the present study may have implications for understanding the stresses and 
deformations of the blood flow in a healthy and basilar aneurysm artery.
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In this study, a numerical modeling is carried out to simulate 
the 3D model of the aneurysm and compare it to that of a healthy 
one in a basilar artery. The structure of the aneurysm was adopted 
from the one in Figure 1. In order to do a more precise modeling, 
ABAQUS/CFD (Waltham, MA, the United States) was used to solve 
the incompressible flow and ABAQUS/Standard was used to solve 
the structural part of the model. To do this, at first the model was 
proposed to solve the hemodynamics of the flow using Computational 
Fluid Dynamics (CFD) of the blood flow, and then the interaction of 
the blood flow with that of the arterial wall was modeled using FSI 
approach. Thereafter, the shear stress, von Mises stress, displacement, 
and pressure of the diseased and healthy arteries are reported and 
compared.

Computational Model
Fluid and solid models

The blood flow in the model was considered to behave like a 
laminar, Newtonian, and incompressible fluid. The diameter for the 
inlet of the flow was 3.23 mm and the outlet was 2.41 mm, and the 
thickness of the arterial wall was also made as 300 µm. In addition, 
decreasing rate of the posterior artery of the brain was 0.75 times of 
the diameter of the basilar artery. The Reynolds number was also set 
to 422 [19]. Since the peak value of the Reynolds number at systolic 
side is 1620 and it is lower than the 2300, the inlet flow can be assumed 
to be laminar. The Arbitrary Lagrangian-Eulerian (ALE) method was 
employed to couple the solid (arterial wall) and fluid (blood) nodes 
together.

         		                 			                     

						       (1)

where ρf
  is the fluid density, P is the pressure, u is the fluid 

velocity, and Ug is the vector of flow velocity. In the above equation, 
the term (u-ug) is the relative velocity of the flow in respect to the 
mean velocity [20]. In the current study, the blood was considered to 
be Newtonian with the density and dynamic viscosity of 1050 kg/m3 

and 0.00319 kg/m.s. Although the behavior of the blood flow is a non-
Newtonian shear thinning, for the one which have a diameter larger 
than 0.5 mm the assumption of Newtonian flow is acceptable [21,22]. 

     The momentum conservation equation for the mechanical 
behavior of the solid is presented in Equation 2.  

                                                                          		    (2)

where ρs
  is the solid density, σs is the stress tensor, and gU  is 

the local acceleration of the solid. The mechanical behavior of the 
solid can be considered to be elastic [23-25] or hyperelastic [26,27], 
incompressible [28,29], and homogenous [30-32]. However, there 
are some other models which define the mechanical behavior of the 
arterial wall, including viscoelastic [33], hyperviscoleastic [34], etc. In 
the current study the mechanical behavior of the arterial wall was set 
to an isotropic elastic behavior with a Poisson’s ratio of 0.45 and the 
density of 1050 kg/m3 [35,36]. In addition, due to a small variation 
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Figure 1: The structural model of (a) the healthy basilar artery and aneurysm 
one from the (b) side and (c) frontal view (all the dimensions are reported 
in mm).

Figure 3: The meshed model of the aneurysm, including the CFD and 
Structure, by HEX elements.

Figure 2: The (a) input velocity of the artery and (b) the boundary of the 
model for the simulation.

Figure 4: The pressure distribution and shear stress of the simulation model 
at the 0.2 sec.
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is the blood flow, the blood was considered to be incompressible as 
well [37-39].

The geometry, boundary conditions, and methodology of 
the model

The structure of the model is indicated in Figure 1. The dimensions 
of the model are assigned to the model according to the Perlea, et al. 
[18]. The angle between the basilar artery and that of the posterior on 
in the brain was set to 140 which were calculated by Liou, et al. [40]. 
The length of the artery was defined as 6.1 and as 7.1 times larger 
than that of the diameter of the posterior and basilar artery of the 
brain [41]. The boundary of the fluid was divided into three regions, 
including inlet, outlet, and the transient (wall) sections as depicted in 
Figure 2. The boundary for the inlet of the flow was presumed to be 
pulsatile as plotted in Figure 2a and in the outlet section the pressure 
of zero with no slip boundary was defined as shown in the equations 
of 3 and 4 [42,43]. 
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The boundary for the solid was following the one in equation 5. 
In a way that, the displacement of the solid and fluid elements should 
agree with each other following the no slip boundary condition [44]. 

                                                                                                                                                      
                  					     (5)
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where σ, d, and n̂ are the stress tensor, displacement, and normal 
vector in the boundary. The Terms s and f are also standing for solid 
and fluid, respectively. The velocity of the blood flow in the inlet of the 
main basilar artery was set to 39.7 m/s [41].

Meshing and mesh density analysis

In order to solve the numerical problem, including deformation 
and motion of the arterial wall, the suitable number of meshing is 
do required [45,46]. The model was meshed with Hex elements as 
illustrated in Figure 3. The blood flow was meshed with the FC3D8 
elements. Five different meshing were compared from 3152 to 45652 
and finally the mesh number of 11504 was selected since it showed 
suitable answer at a lower number of elements and simulation time.  

Figure 5: The pressure distribution and shear stress of the simulation model 
at the 0.4 sec.

Figure 7: The distribution of the displacement as well as von Mises stress in 
the artery with and without aneurysm at the 0.2 sec.

Figure 6: The curve of the pressure versus the simulation time for the basilar 
aneurysm artery.

Figure 8: The distribution of the displacement as well as von Mises stress in 
the artery with and without aneurysm at the 0.4 sec.
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Results
CFD modeling of the blood flow in the basilar artery 

The blood flow was simulated with the boundary condition 
pointed out. Figure 4 shows the pressure distribution as well as the 
shear stress in the wall for the healthy and aneurysm basilar arterial 
walls. Degeneration of the weakness of the arterial wall is believed to 
be responsible of the hemodynamic stress in the bifurcation of the 
aneurysm wall [47]. In this figure, the pressure at the bifurcation point 
of the basilar artery at the simulation time of 0.2 sec which might be 
the reason of aneurysm is presented. In addition, the same pattern at 
the time of 0.4 sec is shown in Figure 5. The pressure curve versus the 
simulation time for the aneurysm basilar artery is provided in Figure 
6. It is observed that the highest pressure is happened at the time of 
0.2 sec when the shear stress reaches to its highest value.

 Hemodynamics of the blood in the basilar aneurysm artery

The displacement and the von Mises stress of the arterial wall at 
the time of 0.2 and 0.4 sec are exhibited in Figures 7 and 8, respectively. 
The maximum amount of stress was occurred at the simulation time 
of 0.2 sec around the neck of aneurysm which may lead to rupture in 
the aneurysm wall. The results also showed that the displacement on 
the aneurysm wall is increasing from the neck of the aneurysm until 
the dome of that. Moreover, the displacement in the basilar artery 
as well as the posterior cerebral artery was almost zero. Finally, the 
distribution of energy in the aneurysm model is presented in Figure 
9, which shows its highest value at the time of 0.2 sec.

Conclusions
In this study, the interaction of the blood flow and the aneurysm 

artery was simulated using a pulsatile computational FSI approach. 
Finally, the contours of stresses and strains were evaluated and 
compared for both the healthy and aneurysm basilar artery. The 
results of the present study may have implications for understanding 
the stresses and deformations of the blood flow in a healthy and 
basilar aneurysm artery.
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