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Abstract

Accurate segmentation of glioma from Magnetic Resonance (MR) imagery undoubtedly provides essential
assistance for glioma resection and following progress evaluation after the resection. Numerous methods have
been presented to segment glioma from Two Dimensional (2D) or Three Dimensional (3D) MR images. To deal
with the complex structure of brain and the various shapes of glioma, methods based on selecting asymmetric
areas with respect to the approximate symmetry of brain are widely used. This kind of methods, however,
may fail in the case of segmenting the glioma across the mid-sagittal plane. This paper developed a fully 3D
automatic asymmetry detection method for the glioma segmentation, while overcoming the location limitation in
conventional asymmetry detection methods. The proposed 3D bounding box method locates glioma in the Voxel
of Interest (VOI), which is checked and corrected by the reflectional method. With the accurate VOI, the improved
3D GrowCut method is employed to segment glioma automatically and quickly. We evaluated the accuracy of
the proposed method by using both synthetic and real clinical MR image data. Experimental results show that
our method conquers the difficulties of conventional asymmetry detection method when segmenting the glioma
across the mid-sagittal plane successfully. Our method provides similar segmentation performance with manual
segmentation and shows obvious higher efficiency and more convenience than 2D automatic segmentation
method.

Introduction

Glioma is one of the most common malignant brain tumors [1,2], with high mortality and
morbidity. Surgical resection followed by adjuvant chemotherapy and radiotherapy is the standard
protocol treating glioma patients [3]. The Gross Total Resection (GTR) or Subtotal Resection (STR)
of glioma seems to be correlated with a longer survival [4-7]. However, achieving the GTR/STR
of glioma is very difficult for its diffuse growth pattern. Accurate segmentation of glioma from
Magnetic Resonance (MR) images enhances intraoperative techniques for tumor delineation [8]. It
contributes to the goal of maximal tumor resection while keeping the minimal neurologic deficits
at an acceptable level [9]. After surgery, accurate glioma segmentation allows to quantify the tumor
residue if present, including volume and other morphological characteristic of the glioma, which
is especially helpful for patients who need long term follow-up regularly. Segmentation is also a
vital and basic step for subsequent registration, feature detection, classification and construction
of pathological brain atlases [10]. However, the accurate and fast segmentation is still a challenging
task due to various locations and shapes of the gliomas and the complex structure of the brain.

Numerous algorithms have been developed to perform brain tumor detection and segmentation,
including semi-automatic and automatic approaches. These methods include the level set methods
[11], asymmetry analysis based methods [12-15], region growing [16-19], watershed algorithms
[18,20] and atlas based method [21,22]. Among them, segmentation methods based on asymmetry
detection are widely used and researched. To detect existence of brain tumor on 3D MR neuroimages
rapidly, Wang, et al. [12] proposed a symmetry analysis method with respect to the midsagittal plane.
Four parameters: correlation coefficient, root mean square error, integral of absolute difference and
integral of normalized absolute difference were used to estimate the similarity between the grey
level histograms of both hemispheres. However, this method could not localize the tumor position
on data in which suspicious tumors are detected. In 2009, Khotanlou, et al. [13] roughly located
the tumor by calculating the histogram difference between normal and pathological hemispheres.
A thresholding with tumor peak range values and the gray level ranges of the tumor were selected
manually in the histogram difference. A limit of this approach was that the symmetry analysis
may fail in case of symmetrical tumor across the mid-sagittal plane. Saha, et al. [14] proposed the
bounding box method, which computed with gray level intensity histograms to obtain the score
function based on the Bhattacharya coefficient. Bounding box that circumscribed the tumor was
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located on 2D MR slice by the score function. This approach was
robust to the variation of intensities among different MR image
slices and was completely unsupervised and efficient. However, these
methods may fail when tumor is located across the mid-sagittal plane.
This problem is still unsolved.

Recently, supervised and unsupervised learning algorithms
based on statistical approaches have been proposed. Support Vector
Machines (SVM) was used to segment healthy and pathological
tissues [23,24]. However, to learn discriminant functions for the
posterior segmentation, a sufficiently large set of labelled samples is
required in supervised learning methods [25]. Unsupervised learning
tackles this limitation at the cost of correctness by clustering, such
as Gaussian clustering [26-28], Fuzzy clustering [29,30] and spectral
clustering [31]. Two of the main steps of the segmentation model are
the statistical analysis of intensity distribution and feature extraction
[32,33]. However, the MR images quality is often subject to various
uncertainties, such as the in homogeneity of RF coil, the partial volume
effect, and the presence of electronic noise etc. These factors would
decrease the segmentation performance [34]. And because of explicit
dependency on intensity features, the segmentation is restricted to
images acquired with the exact same imaging protocol as the one used
for the training data [35]. Compared with asymmetry analysis based
methods, supervised and unsupervised learning algorithms are more
complex and are limited to the size and quality of the dataset.

This paper proposed a fully automatic method which also utilizes
the asymmetry detection strategy. The method extended the quick
detection method proposed by Saha, et al. [14] to 3D unsupervised
change detection method. It can segment gliomas quickly and
accurately even when gliomas locate across the mid-sagittal plane,
while no prior knowledge of the possible locations of gliomas is
needed. The proposed method includes three main steps: searching
the Volume of Interest (VOI), checking and correcting the VOI, and
detecting boundaries of gliomas.

Since providing accurate initial position of glioma is one of the
main difficulties for extending semi-automatic methodsinto automatic
ones, volume of interest which contains glioma should be searched in
advance to reduce the difficulty of segmentation. The bounding box
method proposed by Saha, et al. was used to provide active contour,
normalized graph cut and other segmentation techniques with seeds
on 2D MR slices [14]. However, before applying the 2D bounding
box method, the slices without the glioma should better be firstly
eliminated to save time. In this paper, the bounding box is extended
into a 3D search method by locating the glioma in a cuboid instead of
rectangles in 2D MR slices. The proposed 3D bounding box method
locates glioma in VOI more quickly than dealing with 2D MR images
slice by slice.

Kiryati, et al. proposed a global optimization approach to
detect dominant local symmetry which could be used for guiding
visual attention and segmentation algorithms [36]. Based on the
result of bounding box, we apply the reflectional symmetry theory
to detect glioma in a relative small range instead of the whole MR
image with complex brain tissues. The distance between the centers
of glioma found by bounding box and reflectional symmetry
method is calculated to judge the accuracy of VOI The limitation
of the bounding box method is overcome by incorporating with the
reflectional symmetry method. An accurate VOI could be located
despite of the location of gliomas.

Once the VOI has been obtained, many methods could be used
for accurate segmentation of glioma. Vezhnevets, et al. proposed
the interactive GrowCut method which is fast and widely used in
generic photos and medical images [37]. Given a small number of
user-labelled pixels, the rest of the image is segmented automatically
based on cellular automaton algorithm [38]. Because too many seed
points should be manually selected in 3D MR data, the segmentation
by GrowCut method is difficult and inconvenient. In this paper, the
VOI found beforehand is introduced to the GrowCut method in the
step of setting seed labels. The traditional GrowCut method is also
extended into a 3D and fully automatic method. The accuracy of the
proposed method depends no more on the correctness of the user-
marked labels.

The rest of this paper is organized as follows. Section 2 details
the realization of the proposed method. Section 3 presents the
experimental results and analysis. Finally, some conclusions are
presented in Section 4.

Methods

In this paper, a novel 3D automatic segmentation method is
proposed to detect the glioma in MR data. First, through the presented
3D bounding box, volume of interest which contains glioma is found.
The reflectional symmetry method is then applied to overcome
the limitation of the bounding box method when segmenting the
glioma across the mid-sagittal plane. Finally, the 3D semi-automatic
GrowCut algorithm is improved into fully automatic method by
utilizing the obtained VOI as mark labels.

1 / R

(c)

Figure 1: Searching anomaly D from test cuboid | using reference cuboid R.
(a) searching along x direction, (b) searching along y direction, (c) searching
along z direction.
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The 3D bounding box method

We first present the original 2D bounding box method proposed
by Sahaet, al. [14]. The axial brain MR image is firstly divided into two
rectangles which supply as the test and reference image respectively.
The score function is then calculated to search for a little axis-parallel
rectangle on one of the obtained rectangles that is very dissimilar
from the other.

Here we extend the 2D bounding box into 3D algorithm which
is also based on the score function to search a volume-based global
change. Figure 1 illustrates the notations.

The volume of change (D) is detected on a test cuboid (I),
when compared with a reference cuboid (R). The volume of change
D restricted by an axis-parallel cuboid contains the region of
abnormality. The size of the test cuboid I is MxNxL. A novel score
function identifies D through searching bounds along the x, y, and z
direction, respectively. The score function along x direction is defined
as follows:

E.()=BC (P'",P,")-BC, (P ", P2"M) 1)

where T(l) and B(l) are the “top” and “bottom” sub-cuboids
divided at a distance / from the top of the cuboids: T())=[1, I]x[1,
NIx[1, L] and B()=[l+1, M]x[1, NIx[1, L]. P® denotes the
normalized intensity histogram of cuboid I within T(l). P,"?, PO,
and P ¥ are defined accordingly. BC represents the Bhattacharya
coefficient [39] between two normalized histogram. It measures
the similarity between two normalized intensity histograms and is
defined as:

BC, (A", P =2 ATV (1,)x BV (i) @)

BC, (P, R = > PPV (i) < PP i) 3

When two normalized histograms are the same, the BC between
them is 1. Conversely, the associated BC value is 0 when two
normalized histograms are completely dissimilar. The increasing and
decreasing segments of score function have been proved to meet at
the x, and x, which are the upper and lower bounds of D, respectively.
After the X, and x, are obtained, the volume above X, and the volume
under x, are cut as shown in Figure 1b. T(]) and B() can be redefined
as: T(D)=[1, x,-x,]x[1, []x[1, L] and B(])= [1, x,-x,] x [I+1, N]x[1, L].
The y, and y, which are the left and right bounds of D can be obtained
from the score function plot along y direction. Similarly, the z and z,
which are the front and back bounds of D can also be obtained.

The proposed 3D bounding box can be applied based on the
assumption that healthy human brain is innately left-right symmetric,
with the mid-sagittal plane as the symmetry plane. The region of
gliomas is the volume of change D which leads to asymmetry. The
left and right brain hemispheres represent I and R, respectively. The
3D MR data should be preprocessed by the following steps to obtain
the two symmetric cuboids. The skull boundary is firstly detected by
automatic global thresholding [40] and fitted by ellipsoid. The angle «
between the long axis view of ellipsoid and the z axis is then calculated.
Finally, we rotate the 3D MR image « degree and cut it so as to divide
the whole image into two parts which contains the left and right brain
hemispheres, respectively. Applying the two symmetric hemispheres
to the 3D bounding box method, the volume of change D can be
obtained and defined as the VOL

The reflectional symmetry detection method

Based on the assumption that the two hemispheres are symmetric
except the volume of the glioma, the bounding box method could
accurately detect the glioma contained in only one hemisphere.
However, it only detects the different part between two hemispheres
when the glioma is located across the mid-sagittal plane [13] as shown
in Figure 2. This limits the accuracy of automatic segmentation
methods. In clinics, the location of glioma may cross the mid-sagittal
plane. The limitation of the original bounding box method should be
conquered.

Reflectional symmetry is one of the important features of object
recognition in both human and computer vision systems. Kiryati, et
al. proposed a global optimization approach to detect local symmetry
in grey level images [36]. The measurement of the local symmetry is
treated as finding the global maximum function parameterized by the
location of the center, radius, and the orientation of symmetry axis.
Let f(x,y) be a 2D function that equals zero except within a circle of
radius L center. A measure of 2D reflectional symmetry in the x, y
coordinate system is defined as follow:

L [[f o fe-ydydx 1
2 j j f2(x, y)dydx 2 4)

where for each x the norm is of 1D functions of y along a line
segment extending from -L to L in parallel to the y axis. S{f} ranges
from 0 to 1. The value of S{f} more close to 1 the stronger symmetry
the region inside circle is. In order to improve the robustness, the
circular region is specified in a Gaussian window:

S{f}=

X+ y?
2r? d 5)

where r refers to the effective radius of the support. The maximum
of Eqn (4) is calculated and the optimal parameters are obtained.

1
G(x Y1) =5 expl—(

Because multi-targets including eyeball, cerebrospinal fluid, and
brainstem are in the 3D MR image, the reflectional symmetry could
not be used lonely to detect glioma. Since the VOI found by bounding
box contains part of the glioma, we apply the reflection symmetry

Figure 2: The result of bounding box detecting anomaly. The two symmetric
parts (blue and green) cannot be detected. While the asymmetric part (red)
is detected and treated as the VOI
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method based on it. The symmetry is detected in an axial slice of VOI
which contains the max skull (image F). And the search scope is the
expansion of the VOI in image F (each length is expanded to 1.5 times
of the maximum edge length). The distance between the center of the
reflectional symmetry and the center of VOI found by bounding box
method are calculated. If the value of distance is small (smaller than
one-third times of the minimum edge length of the VOI found by
bounding box method), the result of bounding box is correct and
accepted. Otherwise, the result of bounding box should be replaced
with the center of reflectional symmetry. Six planes of VOI should
also be adjusted to make the VOI contain the whole glioma. The
upper and lower surfaces perpendicular to x axis should be moved
-r/+r along x axis. The other planes are moved accordingly.

The 3D GrowCut method

GrowCut method is one of the region-growing based
segmentation algorithms [37]. In this method, certain image pixels
that belong to objects are firstly specified by user to provide the
hard constraint. Labels of all other image pixels are then assigned
automatically by the Cellular Automaton (CA) [38]. Finally, labels of
the same object are assigned the same. Meanwhile, labels of different
objects are assigned differently. In this paper, the method is improved
by automatic setting seed labels in MR images. Users have no need to
set labels of glioma and surroundings on MR data slice by slice.

Setting seed labels: Because the size of brain changes from small
to large to small along axial direction, centers of glioma in different
slices are relatively moved and should be adjusted. The axial slice of
VOI which contains the max skull is used as a reference (I,). Centers
of glioma in the image I, and the VOI are the same and denoted as
(x_center,, y_centery). The center and radius of glioma in different
slice are defined as follows:

X _center; — X

X _center, = *, + X, )
xS
center, Y,
y _center, =@*ka +Y, )
yS
— mi ka ka
r, =min(-*-,>=)*S ®)
IxS IyS

where x_center, and y_center, are the coordinates of the center
of glioma in the kth slice. The (X,,Y,) and (lxk,lyk) are the center and
length of enclosing rectangle of the skull in the kth slice, respectively.
Similarly, the (I, ) is the center of enclosing rectangle of the skull in
the image I. The S is half of the minimum length of VOL.

After calculating each center of the glioma in MR slices, seed
labels of glioma and surrounding brain structures should be set.
To label the glioma accurately, a small circle with radius of r, and
centered at (x_centerk, y_centerk,) in the kth slice is marked as true
(+1). Meanwhile, the VOI is expanded 1.2 times to be a larger cuboid
and then marked as false (-1). The glioma and peripheral background
are labeled as ellipsoid and cuboid, respectively.

Diffusing seed labels: The voxel labelling process is treated as growth
and struggling for domination. The unknown voxels are set to zero at

initial stage. For each voxel, label is assigned iteratively according to
its strength and that of its neighboring voxels. The p in a set of voxels
P is a voxel to be set. The Moore neighborhood N(p) is accepted and
each voxel p has 26 neighboring voxels. The g is one of the voxels in
N(p). At iteration t+1, the label ;"' and strength ¢'* of the voxel p
are updated as follows:

w_|Artade,—cp-0 <o)
" Bue(c,-c -6 >6) ©)

L _ 9:”(g(||CP_Cq||2)0t SH;)
" a(c,-c.|) e e, -c,|)-6 >y a0

where Cp is the luminance value of the voxel p. g(x) is a
monotonous decreasing function bounded to [0,1]:

X

g(x)=1-—="—
max(C) (11)

The iteration is stopped when label of voxel changes no more or
the maximum number of iteration is reached. In the end, the region
assigned with “+1” and “-1” represent the glioma and background,
respectively. The maximum number of iteration can be set in 200 to
500. In order to obtain a fast processing speed, we set it to 200.

Materials

We retrospectively studied the “Brain Tumor Image Bank” of
Neurosurgical Department, Huashan Hospital of Fudan University
in Shanghai, China and enrolled 48 patients who were diagnosed with
lower grade glioma. For each patient, the 3D T2-flair MR images of all
patients were provided. These images contained gliomas with different
sizes, intensities, shapes and locations, which allowed us to illustrate
the accuracy and validity of our method. There were 29 women aged
from 26 to 61 and 19 men aged from 24 to 58, respectively. This study
was approved by the institutional review board, and each patient was
informed and consented to join the research.

Experiments and Results

We evaluated the proposed 3D segmentation method using both
synthetic and real 3D MR images. The synthetic images were obtained
by combining real MR images with simulated tumor. The manual
method was utilized as the standard. In order to verify the necessity
and effectivity of the proposed 3D bounding box, we compared
the performance of the method with the original 2D bounding box
method proposed by Saha etal. [13]. Besides, the original 2D bounding
box method was also improved to a 2D automatic algorithm in the
similar way as this paper proposed. Both in the original and improved
2D automatic bounding box based GrowCut method, labels were set
piece by piece. The results of 3D automatic segmentation method
were compared with that of improved 2D algorithm.

To compare the results quantitatively, metrics including True
Positive rate (TP), False Positive rate (FP), False Negative rate (FN),
Similarity Index (SI) and total accuracy rate (ACC) were calculated:
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PN o150 (1)
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All

where S is the real area of glioma. S, is the area detected by
segmentation method. All denotes the total number of voxels in
the images, [S, M S;| denotes the glioma region voxels that were
correctly determined, All -|S, U S;| denotes the non-glioma region
voxels that were correctly determined. Besides, the total number of
points in the area ST was also calculated and denoted as Total.

Segmentation results of synthetic images

In order to validate the accuracy of segmenting glioma in random
locations, we simulated the glioma in two cases by overlapping two or
three spheres of the same size. The size of images were 128x128x27
pixels. In case 1, glioma was fully located in the left side of the brain. In
case 2, glioma was located across the mid-sagittal plane. The Region
of Interest (ROI) searched by original 2D bounding box method is
shown in Figure 3. The results of VOI obtained from our proposed
3D bounding box are presented in Figure 4. The original 2D method
accurately locates glioma in case 1, while only detects part of the
glioma in case 2. From the cross-section, sagittal plane and coronal
plane, we can see that the gliomas are located in the VOI accurately.
Figure 5 shows the original 2D, improved 2D and 3D segmentation
results of different slices. Both the improved 2D and 3D segmentation
results are accurate. Due to the inaccurate location, the original 2D
method partially segments the glioma, which is unsatisfactory. After
dealing with all the slices, 3D surface of the segmented glioma in
case 1 and case 2 are reconstructed and illustrated in Figure 6. The
corresponding results of TP, FP and SI are presented in Table 1.

(b)

(a)

Figure 3: Results of original 2D bounding box method. (a) ROl searched in
case 1, (b) ROI searched in case 2.

Table 1: The metrics for comparing the improved 2D with 3D segmentation
methods.

Method | Total TP FP FN Sl ACC
2D 9265 | 0.8821 @ 0.0099 & 0.1789 @ 0.8735 @ 0.9973
Case 1
3D 9265 | 0.8905 @ 0.0028 | 0.1095 @ 0.8881 & 0.9977
2D 6790 @ 0.867 | 0.0015 & 0.133 | 0.8657 & 0.9979
Case 2
3D 6790 | 0.8802 @ 0.0005 | 0.1198 @ 0.8798 | 0.9982

Table 2: The running time for comparing the improved 2D with 3D segmentation
methods.

GrowCut Total
Method | Bounding box (seconds)
(seconds) | (seconds)
2D 24.397 34.965 59.362
Case 1
3D 7.198 46.377 53.575
2D 25.338 31.717 57.055
Case 2
3D 7.32 43.841 51.161

The running time of improved 2D and 3D automatic segmentation
method are recorded in Table 2.

Segmentation results of clinical images

The 48 real MR data were also segmented to test the robustness of
our proposed method. In these experiments, the manual segmentation
was performed by two individual neurosurgeons from the Huashan
Hospital of Fudan University with consistent agreement piece by
piece. Two representative cases were shown as the examples. The size
of clinical images were 464x542x68 voxels. In case 3, glioma was fully
located in the left side of the cerebrum. While glioma was located
across the mid-sagittal plane in case 4. Figure 7 and Figure 8 show
the results of locating gliomas in both cases. Similarly, we can see
the original 2D method could only search the different part between
hemispheres compared with the 3D bounding box method. The
original 2D, improved 2D and 3D segmentation results of different

(a) (b) (c)
(d) (c) (f)

Figure 4: VOI obtained from our proposed 3D bounding box method showed
by three observation plane. (a) Result of cross-section in case 1, (b) result
of sagittal plane in case 1, (c) result of coronal plane in case 1, (d) result
of cross-section in case 2, (e) result of sagittal plane in case 2, (f) result of
coronal plane in case 2.
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Figure 5: Segmentation results. (a) one of the piece results in case 1, (b)
one of the piece results in case 1, (c) one of the piece results in case 2, (d)
one of the piece results in case 2. The first line is the original images. The
second to fourth lines are the results of original 2D, improved 2D and 3D

(b)

(a)

Figure 7: Results of original 2D bounding box method. (a) ROI searched in

segmentation method, respectively.

Table 3: The metrics for comparing the improved 2D with 3D segmentation
methods.

Method | Total TP FP FN Sl ACC
2D 77629 @ 0.822 | 0.0642 @ 0.178 | 0.7724 | 0.9989
Case 3
3D 77629 | 0.8461 @ 0.0298 | 0.1539 @ 0.8216 | 0.9991
2D 80877 | 0.8485  0.0927 | 0.1515 @ 0.7765 | 0.9988
Case 4
3D 80877 | 0.8346 @ 0.0237 | 0.1654 @ 0.8153 | 0.9991

(a) (b) (c)

(d) (e) (f)

Figure 6: Reconstructed results. (a) Simulated glioma in case 1, (b)
reconstructed result of improved 2D method in case 1, (c) reconstructed
result of 3D method in case 1, (d) simulated glioma in case 2, (e)
reconstructed result of improved 2D segmentation method in case 2, (f)
reconstructed result of 3D method in case 2.

case 3, (b) ROI searched in case 4.

Table 4: The segmentation volume comparison for the improved 2D with 3D
segmentation methods.

Total volume

3 3
Method (mm?) TP volume (mm?3) FP volume (mm?3)
2D 50412 41439 3237
Case 3
3D 50412 42654 1502
2D 52522 44565 4868
Case 4
3D 52522 43835 1244

slices are showed in Figure 9. According to the manual segmentation
results, the original 2D method correctly segments the glioma. While
the improved 2D and 3D segmentation results are accurate. The 3D
surface of the segmented glioma in case 3 and case 4 are reconstructed
and illustrated in Figure 10. Table 3 presents the metrics of improved
2D and 3D automatic segmentation results. Table 4 presents the
segmentation volume comparison for the improved 2D and 3D
automatic segmentation methods, where Total volume represents the
real glioma volume, TP volume represents the glioma volume that
was correctly determined, FP volume represents the volume that was
falsely identified as glioma. The running time of the improved 2D and
3D automatic segmentation method are recorded in Table 5.

(d) (e) (f)

Figure 8: VOI obtained from our proposed 3D bounding box method showed
by three observation plane. (a) Result of cross-section in case 3, (b) result
of sagittal plane in case 3, (c) result of coronal plane in case 3, (d) result
of cross-section in case 4, (e) result of sagittal plane in case 4, (f) result of
coronal plane in case 4.
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(a)

Figure 9: Segmentation results. (a) one of the piece results in case 3, (b)
one of the piece results in case 3, (c) one of the piece results in case 4, (d)
one of the piece results in case 4. The first line is the original images. The
second to fourth lines are the results of original 2D, improved 2D and 3D
segmentation method, respectively.

Statistical tests

We have also measured the effectiveness of the proposed
methods by statistical tests, which were performed with SPSS
version 16.0 software (SPSS for windows, SPSS, Inc. Chicago, IL).
The manual method was still considered as the gold standard. The
mean and standard deviation (SD) of TP, FP and SI were calculated
and shown in Table 6. The Pearson’s correlation coefficient (r) and
P values of two-side T test between segmentation results of different
methods were also calculated. Correlation coefficient r represents the
correlation between the classification result (the labels of all voxels) of
the proposed method and the manual method. The P values of two-
side T test were considered statistically significant when they were
less than 0.05. Table 7 shows the results of correlation between three
methods.

(d) (c) (f)

Figure 10: Reconstructed results. (a) Reconstructed result of manual
segmentation in case 3, (b) reconstructed result of 2D method in case 3,
(c) reconstructed result of 3D method in case 3, (d)reconstructed result of
manual segmentation in case 4, (e) reconstructed result of 2D method in
case 4, (f) reconstructed result of 3D method in case 4.

Table 5: The running time comparison for the improved 2D with 3D segmentation
methods.

Method Bounding box GrowCut Total

(seconds) (seconds) (seconds)
2D 593.077 1762.649 2355.726

Case 3
3D 162.394 1871.333 2033.724
2D 568.622 1346.64 1915.262

Case 4
3D 173.203 1402.509 1575.712

Table 6: The metrics for comparing the improved 2D with 3D segmentation
methods.

TP FP Sl
Mean 0.8458 0.0811 0.7764
20 SD 0.0255 0.0302 0.0059
Mean 0.8399 0.0342 0.819
%0 SD 0.0181 0.0213 0.00495

Table 7: The correlation between the classification result of manual method and
the proposed method.

r P value
2D method versus manual method 0.8413 0.013
3D method versus manual method 0.8322 0.018

Table 8: The theoretical complexity of the original 2D and proposed 3D bounding
box methods.

Direction Method Addition Multiplication
2D 20[MNL2+(p-1)L] 40(pL)
One direction
3D 20[MNL2+(p-1)] 40(p)
2D 20[2MNL2+(2p-1)L] 80(pL)
Three direction
3D 30[2MNL?+(2p-1)] 120(p)

Discussion and Conclusion

From the experiments, we can see that compared with the
original 2D bounding box method, our 3D bounding box method
located glioma more accurately. Besides, the 3D bounding box
overcomes the defect that fails to segment the glioma across the mid-
sagittal plane. The 3D segmentation results and reconstructed results
were similar to the results of the improved 2D method and manual
method. In table 7, the two correlation coefficients are not very high,
one possibility is that tumor segmentation is a challenging task, the
manual segmentation itself may have some segmentation error due
to the complex structure of brain MR iamges and the infiltration of
Glioma.

The metrics showed that the accuracy of the proposed method
was comparable with that of improved 2D segmentation method.
However, the computation time of the 3D automatic method was less
than that of the 2D automatic method. The complexity is determined
by Eqns (1), (2) and (3). The image is assumed in the size of MxNxL
and the number of grayscale for image is p which we set 20 in this
paper. Table 8 shows the theoretical analysis of the computation
time for the bounding box method. Besides, due to cutting the
searching region after getting bounds of the axial direction, the actual
computation time of 3D automatic bounding box method is less
than in Table 8. In Eqns (9) and (10), the number of comparisons
is increased from 8 to 26 when extending the 2D GrowCut method
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to 3D method. As a result, more time is needed in this part. We can
see that the theoretical results are in consistent with the experimental
results. However, due to the rough location of glioma has already
obtained by the bounding box; the computation time can be saved by
reducing the scope of 3D GrowCut from the whole image to the VOL
In the total segmentation process, our proposed method not only
segments gliomas accurately but also saves calculation time.

In this paper we have presented an improved bounding box
method to accurately locate the glioma within VOI, even in cases that
the glioma extends across the mid-sagital plane. It is then introduced
to the GrowCut method for automatic segmenting the glioma from
3D MR images. The proposed method overcomes the disadvantage
of semi-automatic GrowCut method which is difficult to label seeds
in 3D MR images and time consuming. It is also faster than the
improved 2D segmentation method.
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