
SM Journal 
of Biomedical 
Engineering

Gr   upSM

How to cite this article Wu G, Ji C, Yu J, Wang Y, Chen L, Shi Z, et al. Automatic 
Segmentation of Glioma from 3D MR Images by Using Location Free Asymmetry 

Detection. SM J Biomed Eng. 2017; 3(1): 1012.

OPEN ACCESS

ISSN: 2573-3702

Introduction
Glioma is one of the most common malignant brain tumors [1,2], with high mortality and 

morbidity. Surgical resection followed by adjuvant chemotherapy and radiotherapy is the standard 
protocol treating glioma patients [3]. The Gross Total Resection (GTR) or Subtotal Resection (STR) 
of glioma seems to be correlated with a longer survival [4-7]. However, achieving the GTR/STR 
of glioma is very difficult for its diffuse growth pattern. Accurate segmentation of glioma from 
Magnetic Resonance (MR) images enhances intraoperative techniques for tumor delineation [8]. It 
contributes to the goal of maximal tumor resection while keeping the minimal neurologic deficits 
at an acceptable level [9]. After surgery, accurate glioma segmentation allows to quantify the tumor 
residue if present, including volume and other morphological characteristic of the glioma, which 
is especially helpful for patients who need long term follow-up regularly. Segmentation is also a 
vital and basic step for subsequent registration, feature detection, classification and construction 
of pathological brain atlases [10]. However, the accurate and fast segmentation is still a challenging 
task due to various locations and shapes of the gliomas and the complex structure of the brain. 

Numerous algorithms have been developed to perform brain tumor detection and segmentation, 
including semi-automatic and automatic approaches. These methods include the level set methods 
[11], asymmetry analysis based methods [12-15], region growing [16-19], watershed algorithms 
[18,20] and atlas based method [21,22]. Among them, segmentation methods based on asymmetry 
detection are widely used and researched. To detect existence of brain tumor on 3D MR neuroimages 
rapidly, Wang, et al. [12] proposed a symmetry analysis method with respect to the midsagittal plane. 
Four parameters: correlation coefficient, root mean square error, integral of absolute difference and 
integral of normalized absolute difference were used to estimate the similarity between the grey 
level histograms of both hemispheres. However, this method could not localize the tumor position 
on data in which suspicious tumors are detected. In 2009, Khotanlou, et al. [13] roughly located 
the tumor by calculating the histogram difference between normal and pathological hemispheres. 
A thresholding with tumor peak range values and the gray level ranges of the tumor were selected 
manually in the histogram difference. A limit of this approach was that the symmetry analysis 
may fail in case of symmetrical tumor across the mid-sagittal plane. Saha, et al. [14] proposed the 
bounding box method, which computed with gray level intensity histograms to obtain the score 
function based on the Bhattacharya coefficient. Bounding box that circumscribed the tumor was 
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Abstract

Accurate segmentation of glioma from Magnetic Resonance (MR) imagery undoubtedly provides essential 
assistance for glioma resection and following progress evaluation after the resection. Numerous methods have 
been presented to segment glioma from Two Dimensional (2D) or Three Dimensional (3D) MR images. To deal 
with the complex structure of brain and the various shapes of glioma, methods based on selecting asymmetric 
areas with respect to the approximate symmetry of brain are widely used. This kind of methods, however, 
may fail in the case of segmenting the glioma across the mid-sagittal plane. This paper developed a fully 3D 
automatic asymmetry detection method for the glioma segmentation, while overcoming the location limitation in 
conventional asymmetry detection methods. The proposed 3D bounding box method locates glioma in the Voxel 
of Interest (VOI), which is checked and corrected by the reflectional method. With the accurate VOI, the improved 
3D GrowCut method is employed to segment glioma automatically and quickly. We evaluated the accuracy of 
the proposed method by using both synthetic and real clinical MR image data. Experimental results show that 
our method conquers the difficulties of conventional asymmetry detection method when segmenting the glioma 
across the mid-sagittal plane successfully. Our method provides similar segmentation performance with manual 
segmentation and shows obvious higher efficiency and more convenience than 2D automatic segmentation 
method.
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located on 2D MR slice by the score function. This approach was 
robust to the variation of intensities among different MR image 
slices and was completely unsupervised and efficient. However, these 
methods may fail when tumor is located across the mid-sagittal plane. 
This problem is still unsolved.

Recently, supervised and unsupervised learning algorithms 
based on statistical approaches have been proposed. Support Vector 
Machines (SVM) was used to segment healthy and pathological 
tissues [23,24]. However, to learn discriminant functions for the 
posterior segmentation, a sufficiently large set of labelled samples is 
required in supervised learning methods [25]. Unsupervised learning 
tackles this limitation at the cost of correctness by clustering, such 
as Gaussian clustering [26-28], Fuzzy clustering [29,30] and spectral 
clustering [31]. Two of the main steps of the segmentation model are 
the statistical analysis of intensity distribution and feature extraction 
[32,33]. However, the MR images quality is often subject to various 
uncertainties, such as the in homogeneity of RF coil, the partial volume 
effect, and the presence of electronic noise etc. These factors would 
decrease the segmentation performance [34]. And because of explicit 
dependency on intensity features, the segmentation is restricted to 
images acquired with the exact same imaging protocol as the one used 
for the training data [35]. Compared with asymmetry analysis based 
methods, supervised and unsupervised learning algorithms are more 
complex and are limited to the size and quality of the dataset.

This paper proposed a fully automatic method which also utilizes 
the asymmetry detection strategy.  The method extended the quick 
detection method proposed by Saha, et al. [14] to 3D unsupervised 
change detection method. It can segment gliomas quickly and 
accurately even when gliomas locate across the mid-sagittal plane, 
while no prior knowledge of the possible locations of gliomas is 
needed. The proposed method includes three main steps: searching 
the Volume of Interest (VOI), checking and correcting the VOI, and 
detecting boundaries of gliomas.

Since providing accurate initial position of glioma is one of the 
main difficulties for extending semi-automatic methods into automatic 
ones, volume of interest which contains glioma should be searched in 
advance to reduce the difficulty of segmentation. The bounding box 
method proposed by Saha, et al. was used to provide active contour, 
normalized graph cut and other segmentation techniques with seeds 
on 2D MR slices [14]. However, before applying the 2D bounding 
box method, the slices without the glioma should better be firstly 
eliminated to save time. In this paper, the bounding box is extended 
into a 3D search method by locating the glioma in a cuboid instead of 
rectangles in 2D MR slices. The proposed 3D bounding box method 
locates glioma in VOI more quickly than dealing with 2D MR images 
slice by slice.

Kiryati, et al. proposed a global optimization approach to 
detect dominant local symmetry which could be used for guiding 
visual attention and segmentation algorithms [36]. Based on the 
result of bounding box, we apply the reflectional symmetry theory 
to detect glioma in a relative small range instead of the whole MR 
image with complex brain tissues. The distance between the centers 
of glioma found by bounding box and reflectional symmetry 
method is calculated to judge the accuracy of VOI. The limitation 
of the bounding box method is overcome by incorporating with the 
reflectional symmetry method. An accurate VOI could be located 
despite of the location of gliomas.

Once the VOI has been obtained, many methods could be used 
for accurate segmentation of glioma. Vezhnevets, et al. proposed 
the interactive GrowCut method which is fast and widely used in 
generic photos and medical images [37]. Given a small number of 
user-labelled pixels, the rest of the image is segmented automatically 
based on cellular automaton algorithm [38]. Because too many seed 
points should be manually selected in 3D MR data, the segmentation 
by GrowCut method is difficult and inconvenient. In this paper, the 
VOI found beforehand is introduced to the GrowCut method in the 
step of setting seed labels. The traditional GrowCut method is also 
extended into a 3D and fully automatic method. The accuracy of the 
proposed method depends no more on the correctness of the user-
marked labels.

The rest of this paper is organized as follows. Section 2 details 
the realization of the proposed method. Section 3 presents the 
experimental results and analysis. Finally, some conclusions are 
presented in Section 4.

Methods
In this paper, a novel 3D automatic segmentation method is 

proposed to detect the glioma in MR data. First, through the presented 
3D bounding box, volume of interest which contains glioma is found. 
The reflectional symmetry method is then applied to overcome 
the limitation of the bounding box method when segmenting the 
glioma across the mid-sagittal plane. Finally, the 3D semi-automatic 
GrowCut algorithm is improved into fully automatic method by 
utilizing the obtained VOI as mark labels. 

Figure 1: Searching anomaly D from test cuboid I using reference cuboid R. 
(a) searching along x direction, (b) searching along y direction, (c) searching 
along z direction.
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The 3D bounding box method

We first present the original 2D bounding box method proposed 
by Sahaet, al. [14]. The axial brain MR image is firstly divided into two 
rectangles which supply as the test and reference image respectively. 
The score function is then calculated to search for a little axis-parallel 
rectangle on one of the obtained rectangles that is very dissimilar 
from the other. 

Here we extend the 2D bounding box into 3D algorithm which 
is also based on the score function to search a volume-based global 
change. Figure 1 illustrates the notations.

 The volume of change (D) is detected on a test cuboid (I), 
when compared with a reference cuboid (R). The volume of change 
D restricted by an axis-parallel cuboid contains the region of 
abnormality. The size of the test cuboid I is M×N×L. A novel score 
function identifies D through searching bounds along the x, y, and z 
direction, respectively. The score function along x direction is defined 
as follows:

 
               

 (1)

where T(l) and B(l) are the “top” and “bottom” sub-cuboids 
divided at a distance l from the top of the cuboids: T(l)=[1, l]×[1, 
N]×[1, L] and B(l)=[l+1, M]×[1, N]×[1, L]. PI

T(l) denotes the 
normalized intensity histogram of cuboid I within T(l). PR

T(l), PI
B(l), 

and PR
B(l) are defined accordingly. BC represents the Bhattacharya 

coefficient [39] between two normalized histogram. It measures 
the similarity between two normalized intensity histograms and is 
defined as:

                  (2)

 
                 

(3)

When two normalized histograms are the same, the BC between 
them is 1. Conversely, the associated BC value is 0 when two 
normalized histograms are completely dissimilar. The increasing and 
decreasing segments of score function have been proved to meet at 
the x1 and x2 which are the upper and lower bounds of D, respectively. 
After the x1 and x2 are obtained, the volume above x1 and the volume 
under x2 are cut as shown in Figure 1b. T(l) and B(l) can be redefined 
as: T(l)=[1, x2-x1]×[1, l]×[1, L] and B(l)= [1, x2-x1] × [l+1, N]×[1, L]. 
The y1 and y2 which are the left and right bounds of D can be obtained 
from the score function plot along y direction. Similarly, the z1 and z2 
which are the front and back bounds of D can also be obtained.

The proposed 3D bounding box can be applied based on the 
assumption that healthy human brain is innately left-right symmetric, 
with the mid-sagittal plane as the symmetry plane. The region of 
gliomas is the volume of change D which leads to asymmetry. The 
left and right brain hemispheres represent I and R, respectively. The 
3D MR data should be preprocessed by the following steps to obtain 
the two symmetric cuboids. The skull boundary is firstly detected by 
automatic global thresholding [40] and fitted by ellipsoid. The angle α 
between the long axis view of ellipsoid and the z axis is then calculated. 
Finally, we rotate the 3D MR image α degree and cut it so as to divide 
the whole image into two parts which contains the left and right brain 
hemispheres, respectively. Applying the two symmetric hemispheres 
to the 3D bounding box method, the volume of change D can be 
obtained and defined as the VOI.

The reflectional symmetry detection method

Based on the assumption that the two hemispheres are symmetric 
except the volume of the glioma, the bounding box method could 
accurately detect the glioma contained in only one hemisphere. 
However, it only detects the different part between two hemispheres 
when the glioma is located across the mid-sagittal plane [13] as shown 
in Figure 2. This limits the accuracy of automatic segmentation 
methods. In clinics, the location of glioma may cross the mid-sagittal 
plane. The limitation of the original bounding box method should be 
conquered.

Reflectional symmetry is one of the important features of object 
recognition in both human and computer vision systems. Kiryati, et 
al. proposed a global optimization approach to detect local symmetry 
in grey level images [36]. The measurement of the local symmetry is 
treated as finding the global maximum function parameterized by the 
location of the center, radius, and the orientation of symmetry axis. 
Let f(x,y) be a 2D function that equals zero except within a circle of 
radius L center. A measure of 2D reflectional symmetry in the x, y 
coordinate system is defined as follow:

                   

                (4)

where for each x the norm is of 1D functions of y along a line 
segment extending from –L to L in parallel to the y axis. S{f} ranges 
from 0 to 1. The value of S{f} more close to 1 the stronger symmetry 
the region inside circle is. In order to improve the robustness, the 
circular region is specified in a Gaussian window:

                

                (5)

where r refers to the effective radius of the support. The maximum 
of Eqn (4) is calculated and the optimal parameters are obtained.

Because multi-targets including eyeball, cerebrospinal fluid, and 
brainstem are in the 3D MR image, the reflectional symmetry could 
not be used lonely to detect glioma. Since the VOI found by bounding 
box contains part of the glioma, we apply the reflection symmetry 
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Figure 2: The result of bounding box detecting anomaly. The two symmetric 
parts (blue and green) cannot be detected. While the asymmetric part (red) 
is detected and treated as the VOI
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method based on it. The symmetry is detected in an axial slice of VOI 
which contains the max skull (image F). And the search scope is the 
expansion of the VOI in image F (each length is expanded to 1.5 times 
of the maximum edge length). The distance between the center of the 
reflectional symmetry and the center of VOI found by bounding box 
method are calculated. If the value of distance is small (smaller than 
one-third times of the minimum edge length of the VOI found by 
bounding box method), the result of bounding box is correct and 
accepted. Otherwise, the result of bounding box should be replaced 
with the center of reflectional symmetry. Six planes of VOI should 
also be adjusted to make the VOI contain the whole glioma. The 
upper and lower surfaces perpendicular to x axis should be moved 
-r/+r along x axis. The other planes are moved accordingly.

The 3D GrowCut method

GrowCut method is one of the region-growing based 
segmentation algorithms [37]. In this method, certain image pixels 
that belong to objects are firstly specified by user to provide the 
hard constraint. Labels of all other image pixels are then assigned 
automatically by the Cellular Automaton (CA) [38]. Finally, labels of 
the same object are assigned the same. Meanwhile, labels of different 
objects are assigned differently. In this paper, the method is improved 
by automatic setting seed labels in MR images. Users have no need to 
set labels of glioma and surroundings on MR data slice by slice. 

Setting seed labels: Because the size of brain changes from small 
to large to small along axial direction, centers of glioma in different 
slices are relatively moved and should be adjusted. The axial slice of 
VOI which contains the max skull is used as a reference (IS). Centers 
of glioma in the image IS and the VOI are the same and denoted as 
(x_centerS, y_centerS). The center and radius of glioma in different 
slice are defined as follows:

  

                (6)

  

                (7)

   

                (8)

where x_centerk and y_centerk are the coordinates of the center 
of glioma in the kth slice. The (Xk,Yk) and (lxk,lyk) are the center and 
length of enclosing rectangle of the skull in the kth slice, respectively. 
Similarly, the (lxS,lyS) is the center of enclosing rectangle of the skull in 
the image IS. The S is half of the minimum length of VOI.

After calculating each center of the glioma in MR slices, seed 
labels of glioma and surrounding brain structures should be set. 
To label the glioma accurately, a small circle with radius of rk and 
centered at (x_centerk, y_centerk,) in the kth slice is marked as true 
(+1). Meanwhile, the VOI is expanded 1.2 times to be a larger cuboid 
and then marked as false (-1). The glioma and peripheral background 
are labeled as ellipsoid and cuboid, respectively. 

Diffusing seed labels: The voxel labelling process is treated as growth 
and struggling for domination. The unknown voxels are set to zero at 

initial stage. For each voxel, label is assigned iteratively according to 
its strength and that of its neighboring voxels. The p in a set of voxels 
P is a voxel to be set. The Moore neighborhood N(p) is accepted and 
each voxel p has 26 neighboring voxels. The q is one of the voxels in 
N(p). At iteration t+1, the label 1+t

pβ  
and strength 1+t

pθ   of the voxel p 
are updated as follows:

  

                (9)

   

             

              (10)

where Cp is the luminance value of the voxel p. g(x) is a 
monotonous decreasing function bounded to [0,1]:

                       

              (11)

The iteration is stopped when label of voxel changes no more or 
the maximum number of iteration is reached. In the end, the region 
assigned with “+1” and “-1” represent the glioma and background, 
respectively. The maximum number of iteration can be set in 200 to 
500. In order to obtain a fast processing speed, we set it to 200.

Materials
We retrospectively studied the “Brain Tumor Image Bank” of 

Neurosurgical Department, Huashan Hospital of Fudan University 
in Shanghai, China and enrolled 48 patients who were diagnosed with 
lower grade glioma. For each patient, the 3D T2-flair MR images of all 
patients were provided. These images contained gliomas with different 
sizes, intensities, shapes and locations, which allowed us to illustrate 
the accuracy and validity of our method. There were 29 women aged 
from 26 to 61 and 19 men aged from 24 to 58, respectively. This study 
was approved by the institutional review board, and each patient was 
informed and consented to join the research.

Experiments and Results
We evaluated the proposed 3D segmentation method using both 

synthetic and real 3D MR images. The synthetic images were obtained 
by combining real MR images with simulated tumor. The manual 
method was utilized as the standard. In order to verify the necessity 
and effectivity of the proposed 3D bounding box, we compared 
the performance of the method with the original 2D bounding box 
method proposed by Saha et al. [13]. Besides, the original 2D bounding 
box method was also improved to a 2D automatic algorithm in the 
similar way as this paper proposed. Both in the original and improved 
2D automatic bounding box based GrowCut method, labels were set 
piece by piece. The results of 3D automatic segmentation method 
were compared with that of improved 2D algorithm.

To compare the results quantitatively, metrics including True 
Positive rate (TP), False Positive rate (FP), False Negative rate (FN), 
Similarity Index (SI) and total accuracy rate (ACC) were calculated:
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where ST is the real area of glioma. SA is the area detected by 
segmentation method. All  denotes the total number of voxels in 
the images,  TA SS ∩  

denotes the glioma region voxels that were 
correctly determined, TA SSAll ∪−  denotes the non-glioma region 
voxels that were correctly determined. Besides, the total number of 
points in the area ST was also calculated and denoted as Total.

Segmentation results of synthetic images

In order to validate the accuracy of segmenting glioma in random 
locations, we simulated the glioma in two cases by overlapping two or 
three spheres of the same size. The size of images were 128×128×27 
pixels. In case 1, glioma was fully located in the left side of the brain. In 
case 2, glioma was located across the mid-sagittal plane. The Region 
of Interest (ROI) searched by original 2D bounding box method is 
shown in Figure 3. The results of VOI obtained from our proposed 
3D bounding box are presented in Figure 4. The original 2D method 
accurately locates glioma in case 1, while only detects part of the 
glioma in case 2. From the cross-section, sagittal plane and coronal 
plane, we can see that the gliomas are located in the VOI accurately. 
Figure 5 shows the original 2D, improved 2D and 3D segmentation 
results of different slices. Both the improved 2D and 3D segmentation 
results are accurate. Due to the inaccurate location, the original 2D 
method partially segments the glioma, which is unsatisfactory. After 
dealing with all the slices, 3D surface of the segmented glioma in 
case 1 and case 2 are reconstructed and illustrated in Figure 6. The 
corresponding results of TP, FP and SI are presented in Table 1. 

The running time of improved 2D and 3D automatic segmentation 
method are recorded in Table 2.

Segmentation results of clinical images

The 48 real MR data were also segmented to test the robustness of 
our proposed method. In these experiments, the manual segmentation 
was performed by two individual neurosurgeons from the Huashan 
Hospital of Fudan University with consistent agreement piece by 
piece. Two representative cases were shown as the examples. The size 
of clinical images were 464×542×68 voxels. In case 3, glioma was fully 
located in the left side of the cerebrum. While glioma was located 
across the mid-sagittal plane in case 4. Figure 7 and Figure 8 show 
the results of locating gliomas in both cases. Similarly, we can see 
the original 2D method could only search the different part between 
hemispheres compared with the 3D bounding box method. The 
original 2D, improved 2D and 3D segmentation results of different 
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Figure 3: Results of original 2D bounding box method. (a) ROI searched in 
case 1, (b) ROI searched in case 2.

Table 1: The metrics for comparing the improved 2D with 3D segmentation 
methods.

 Method Total TP FP FN SI ACC

Case 1
2D 9265 0.8821 0.0099 0.1789 0.8735 0.9973

3D 9265 0.8905 0.0028 0.1095 0.8881 0.9977

Case 2
2D 6790 0.867 0.0015 0.133 0.8657 0.9979

3D 6790 0.8802 0.0005 0.1198 0.8798 0.9982

Table 2: The running time for comparing the improved 2D with 3D segmentation 
methods.

 Method Bounding box (seconds)
GrowCut Total

(seconds) (seconds)

Case 1
2D 24.397 34.965 59.362

3D 7.198 46.377 53.575

Case 2
2D 25.338 31.717 57.055

3D 7.32 43.841 51.161

Figure 4: VOI obtained from our proposed 3D bounding box method showed 
by three observation plane. (a) Result of cross-section in case 1, (b) result 
of sagittal plane in case 1, (c) result of coronal plane in case 1, (d) result 
of cross-section in case 2, (e) result of sagittal plane in case 2, (f) result of 
coronal plane in case 2.
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slices are showed in Figure 9. According to the manual segmentation 
results, the original 2D method correctly segments the glioma. While 
the improved 2D and 3D segmentation results are accurate. The 3D 
surface of the segmented glioma in case 3 and case 4 are reconstructed 
and illustrated in Figure 10. Table 3 presents the metrics of improved 
2D and 3D automatic segmentation results. Table 4 presents the 
segmentation volume comparison for the improved 2D and 3D 
automatic segmentation methods, where Total volume represents the 
real glioma volume, TP volume represents the glioma volume that 
was correctly determined, FP volume represents the volume that was 
falsely identified as glioma. The running time of the improved 2D and 
3D automatic segmentation method are recorded in Table 5.

Figure 5: Segmentation results. (a) one of the piece results in case 1, (b) 
one of the piece results in case 1, (c) one of the piece results in case 2, (d) 
one of the piece results in case 2. The first line is the original images. The 
second to fourth lines are the results of original 2D, improved 2D and 3D 
segmentation method, respectively.

Table 3: The metrics for comparing the improved 2D with 3D segmentation 
methods.

 Method Total TP FP FN SI ACC

Case 3
2D 77629 0.822 0.0642 0.178 0.7724 0.9989

3D 77629 0.8461 0.0298 0.1539 0.8216 0.9991

Case 4
2D 80877 0.8485 0.0927 0.1515 0.7765 0.9988

3D 80877 0.8346 0.0237 0.1654 0.8153 0.9991

Figure 6: Reconstructed results. (a) Simulated glioma in case 1, (b) 
reconstructed result of improved 2D method in case 1, (c) reconstructed 
result of 3D method in case 1, (d) simulated glioma in case 2, (e) 
reconstructed result of improved 2D segmentation method in case 2, (f) 
reconstructed result of 3D method in case 2.

Figure 7: Results of original 2D bounding box method. (a) ROI searched in 
case 3, (b) ROI searched in case 4.

Figure 8: VOI obtained from our proposed 3D bounding box method showed 
by three observation plane. (a) Result of cross-section in case 3, (b) result 
of sagittal plane in case 3, (c) result of coronal plane in case 3, (d) result 
of cross-section in case 4, (e) result of sagittal plane in case 4, (f) result of 
coronal plane in case 4.

Table 4: The segmentation volume comparison for the improved 2D with 3D 
segmentation methods.

 Method Total volume 
(mm3) TP volume (mm3) FP volume (mm3)

Case 3
2D 50412 41439 3237

3D 50412 42654 1502

Case 4
2D 52522 44565 4868

3D 52522 43835 1244
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Statistical tests

We have also measured the effectiveness of the proposed 
methods by statistical tests, which were performed with SPSS 
version 16.0 software (SPSS for windows, SPSS, Inc. Chicago, IL). 
The manual method was still considered as the gold standard. The 
mean and standard deviation (SD) of TP, FP and SI were calculated 
and shown in Table 6. The Pearson’s correlation coefficient (r) and 
P values of two-side T test between segmentation results of different 
methods were also calculated. Correlation coefficient r represents the 
correlation between the classification result (the labels of all voxels) of 
the proposed method and the manual method. The P values of two-
side T test were considered statistically significant when they were 
less than 0.05. Table 7 shows the results of correlation between three 
methods.

Discussion and Conclusion
From the experiments, we can see that compared with the 

original 2D bounding box method, our 3D bounding box method 
located glioma more accurately. Besides, the 3D bounding box 
overcomes the defect that fails to segment the glioma across the mid-
sagittal plane. The 3D segmentation results and reconstructed results 
were similar to the results of the improved 2D method and manual 
method. In table 7, the two correlation coefficients are not very high, 
one possibility is that tumor segmentation is a challenging task, the 
manual segmentation itself may have some segmentation error due 
to the complex structure of brain MR iamges and the infiltration of 
Glioma.

The metrics showed that the accuracy of the proposed method 
was comparable with that of improved 2D segmentation method. 
However, the computation time of the 3D automatic method was less 
than that of the 2D automatic method. The complexity is determined 
by Eqns (1), (2) and (3). The image is assumed in the size of M×N×L 
and the number of grayscale for image is p which we set 20 in this 
paper. Table 8 shows the theoretical analysis of the computation 
time for the bounding box method. Besides, due to cutting the 
searching region after getting bounds of the axial direction, the actual 
computation time of 3D automatic bounding box method is less 
than in Table 8. In Eqns (9) and (10), the number of comparisons 
is increased from 8 to 26 when extending the 2D GrowCut method 

Figure 9: Segmentation results. (a) one of the piece results in case 3, (b) 
one of the piece results in case 3, (c) one of the piece results in case 4, (d) 
one of the piece results in case 4. The first line is the original images. The 
second to fourth lines are the results of original 2D, improved 2D and 3D 
segmentation method, respectively.

Figure 10: Reconstructed results. (a) Reconstructed result of manual 
segmentation in case 3, (b) reconstructed result of 2D method in case 3, 
(c) reconstructed result of 3D method in case 3, (d)reconstructed result of 
manual segmentation in case 4, (e) reconstructed result of 2D method in 
case 4, (f) reconstructed result of 3D method in case 4.

Table 5: The running time comparison for the improved 2D with 3D segmentation 
methods.

 Method Bounding box 
(seconds)

GrowCut 
(seconds)

Total 
(seconds)

Case 3
2D 593.077 1762.649 2355.726

3D 162.394 1871.333 2033.724

Case 4
2D 568.622 1346.64 1915.262

3D 173.203 1402.509 1575.712

Table 6: The metrics for comparing the improved 2D with 3D segmentation 
methods.

  TP FP SI

2D
Mean 0.8458 0.0811 0.7764

SD 0.0255 0.0302 0.0059

3D
Mean 0.8399 0.0342 0.819

SD 0.0181 0.0213 0.00495

Table 7: The correlation between the classification result of manual method and 
the proposed method.

 r P value

2D method versus manual method 0.8413 0.013

3D method versus manual method 0.8322 0.018

Table 8: The theoretical complexity of the original 2D and proposed 3D bounding 
box methods.

Direction Method Addition Multiplication

One direction
2D 2O[MNL2+(p-1)L] 4O(pL)

3D 2O[MNL2+(p-1)] 4O(p)

Three direction
2D 2O[2MNL2+(2p-1)L] 8O(pL)

3D 3O[2MNL2+(2p-1)] 12O(p)
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to 3D method. As a result, more time is needed in this part. We can 
see that the theoretical results are in consistent with the experimental 
results. However, due to the rough location of glioma has already 
obtained by the bounding box; the computation time can be saved by 
reducing the scope of 3D GrowCut from the whole image to the VOI. 
In the total segmentation process, our proposed method not only 
segments gliomas accurately but also saves calculation time.

In this paper we have presented an improved bounding box 
method to accurately locate the glioma within VOI, even in cases that 
the glioma extends across the mid-sagital plane. It is then introduced 
to the GrowCut method for automatic segmenting the glioma from 
3D MR images. The proposed method overcomes the disadvantage 
of semi-automatic GrowCut method which is difficult to label seeds 
in 3D MR images and time consuming. It is also faster than the 
improved 2D segmentation method.

Acknowledgement
This work is supported by the National Basic Research Program 

of China (2015CB755500), National Natural Science Foundation of 
China (61471125, 81101049 and 61271071).

References

1. Yang P, Wang Y, Peng X, You G, Zhang W, Yan W, et al. Management and 
survival rates in patients with glioma in China (2004 –2010): a retrospective 
study from a single-institution. J Neuro-Oncol. 2013; 113: 259-266.

2. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 
and IDH2 mutations in gliomas. N Engl J Med. 2009; 360: 765-773.

3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn 
MJ, et al. Radio-therapy plus concomitant and adjuvant temozolomide for 
glioblastoma. New Eng J Med. 2005; 352: 987-996.

4. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time 
to tumor progression and survival in patients with glioblastoma multiforme of 
the cerebral hemisphere. Surg Neurol. 1999; 52: 371-379.

5. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A 
multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, 
extent of resection, and survival. J Neurosurg. 2001; 95: 190-198.

6. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of 
resection threshold for newly diagnosed glioblastomas: clinical article. J 
Neurosurg. 2011; 115: 3-8.

7. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. 
Correlation of the extent of tumor volume resection and patient survival 
in surgery of glioblastoma multiforme with high-field intraoperative MRI 
guidance. Neuro-oncology. 2011; 13: 1339-1348.

8. Schneider JP, Trantakis C, Rubach M, Schulz T, Dietrich J, Winkler D, et 
al. Intraoperative MRI to guide the resection of primary supratentorial 
glioblastoma multiforme-a quantitative radiological analysis. Neuroradiology. 
2005; 47: 489-500.

9. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, et al. 
Gross total resection rates in contemporary glioblastoma surgery: results 
of an institutional protocol combining 5-aminolevulinic acid intraoperative 
fluorescence imaging and brain mappi. Neurosurgery. 2012; 71: 927-935.

10. Toga AW, Thompson PM, Mega MS, Narr KL, Blanton RE. Probabilistic 
approaches for atlasing normal and disease-specific brain variability. 
Anatomy and Embryology. 2001; 204: 267-282.

11. Taheri S, Ong SH, Chong VFH. Level-set segmentation of brian tumors using 
a threshold-based speed function. Image Vision Comput. 2010; 28: 26-37.

12. Wang ZJ, Hu QM, Loe KF, Aziz Aamer, L Wieslaw Nowinski. Rapid and 
automatic detection of brain tumors in MR images. International Society for 
Optics and Photonics (Medical Imaging, 2004). 2004; 602-612.

13. Khotanlou H, Colliot O, Atif J, Bloch I. 3D brain tumor segmentation in MRI 
using fuzzy classification, symmetry analysis and spatially constrained 
deformable models. Fuzzy Sets and Systems. 2009; 160: 1457-1473.

14. Saha BN, Ray N, Greiner R, Murtha A, Zhang H. Quick detection of brain 
tumors and edemas: abounding box method using symmetry. Comput Med 
Imag Graphics. 2012; 36: 95-107.

15. Iscan Z, Dokur Z, Ölmez T. Tumor detection by using Zernike moments 
on segmented magnetic resonance brain images. Expert Systems with 
Applications. 2010; 37: 2540-2549.

16. WangY, CaoJ, LiuL, LinZ. An automatic tumor segmentation system of brain 
tumor from MRI based on a noval energy function. Journal of Convergence 
Information Technology. 2011; 6: 59-67.

17. Khotanlou H, Colliot O, Bloch I. Automatic brain tumor segmentation using 
symmetry analysis and deformable models. Processing of the international 
conference on Advances (Pattern Recognition ICAR, 2007). 2007; 198-202.

18. Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ. Automatic segmentation of 
meningioma from non-contrasted brain MRI intergrating fuzzy clustering and 
region growing. BMC Med Informat Decision Making. 2011; 11: 54.

19. Behzadfar N, Soltanian-Zadeh H. Automatic segmentation of brain tumors 
in magnetic resonance images. Processing of the international conference 
(Biomedical and Health Informatics, 2012). 2012; 329-332.

20. Ratan R, Sharma S, Sharma SK. Brain tumor detection based on multi-
parameter MRI image analysis. Int J Graphics Vision Image Process. 2009; 
9: 9-11.

21. Kaus MR, Warfield SK, Nabavi A, Chatzidakis E, PM Black, FA Jolesz, et 
al. Segmentation of menigiomas and low grade gliomas in MRI. MICCAI, 
Cambridge, UK, Lecture Notes (Computer Science, Springer, Berlin, 1999). 
1999; 1-10.

22. Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated 
segmentation of MR images of brain tumors. Radiology. 2001; 218: 586-591.

23. Ruan S, Zhang N, Liao Q, Zhu Y. Image fusion for following-up brain tumor 
evolution. IEEE International Symposium on Biomedical Imaging: From Nano 
to Macro. 2011; 1: 281-284.

24. Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor 
images using support vector machine classification in combination with 
hierarchical conditional random field regularization. Medical Image Computing 
and Computer-Assisted Intervention. 2011; 14: 354-361.

25. Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain 
tumor segmentation. Magnetic Resonance Imaging. 2013; 31: 1426-1438. 

26. Nie J, Xue Z, Liu T, Young GS, Setayesh K, Guo L, et al. Automated brain 
tumor segmentation using spatial accuracy-weighted hidden Markov Random 
Field. Computerized Medical Imaging and Graphics. 2009; 33: 431-441.

27. ZhangY, BradyM, SmithS. Segmentation of brain MR images through 
a hidden Markov random field model and the expectation-maximization 
algorithm. IEEE Transactions on Medical Imaging. 2001; 20: 45-57.

28. Doyle S, Vasseur F, Dojat M, Forbes F. Fully automatic brain tumor 
segmentation from multiple MR sequences using hidden Markov fields and 
variational EM. Proceedings of NCI-MICCAI BRATS. 2013; 1: 18-22.

29. Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR. Automatic 
segmentation of non-enhancing brain tumors in magnetic resonance images. 
Artificial intelligence in medicine. 2001; 21: 43-63.

30. Kanas VG, Zacharaki EI, Davatzikos C, Sgarbas KN, Megalooikonomou V. A 
low cost approach for brain tumor segmentation based on intensity modeling 
and 3D Random Walker. Biomedical Signal Processing and Control. 2015; 
22: 19-30.

31. Sindhumol S, Kumar A, Balakrishnan K. Spectral clustering independent 
component analysis for tissue classification from brain MRI. Biomedical 
Signal Processing and Control. 2013; 8: 667-674.

32. Iftekharuddin M Khan. Texture models for brain tumor segmentation. 
Quantitative Medical Imaging (Optical Society of America, 2013). 2013.

https://www.ncbi.nlm.nih.gov/pubmed/23483435
https://www.ncbi.nlm.nih.gov/pubmed/23483435
https://www.ncbi.nlm.nih.gov/pubmed/23483435
https://www.ncbi.nlm.nih.gov/pubmed/19228619
https://www.ncbi.nlm.nih.gov/pubmed/19228619
https://www.ncbi.nlm.nih.gov/pubmed/15758009
https://www.ncbi.nlm.nih.gov/pubmed/15758009
https://www.ncbi.nlm.nih.gov/pubmed/15758009
https://www.ncbi.nlm.nih.gov/pubmed/10555843
https://www.ncbi.nlm.nih.gov/pubmed/10555843
https://www.ncbi.nlm.nih.gov/pubmed/10555843
https://www.ncbi.nlm.nih.gov/pubmed/11780887
https://www.ncbi.nlm.nih.gov/pubmed/11780887
https://www.ncbi.nlm.nih.gov/pubmed/11780887
https://www.ncbi.nlm.nih.gov/pubmed/21417701
https://www.ncbi.nlm.nih.gov/pubmed/21417701
https://www.ncbi.nlm.nih.gov/pubmed/21417701
https://www.ncbi.nlm.nih.gov/pubmed/21914639
https://www.ncbi.nlm.nih.gov/pubmed/21914639
https://www.ncbi.nlm.nih.gov/pubmed/21914639
https://www.ncbi.nlm.nih.gov/pubmed/21914639
https://www.ncbi.nlm.nih.gov/pubmed/15951997
https://www.ncbi.nlm.nih.gov/pubmed/15951997
https://www.ncbi.nlm.nih.gov/pubmed/15951997
https://www.ncbi.nlm.nih.gov/pubmed/15951997
https://www.ncbi.nlm.nih.gov/pubmed/22895402
https://www.ncbi.nlm.nih.gov/pubmed/22895402
https://www.ncbi.nlm.nih.gov/pubmed/22895402
https://www.ncbi.nlm.nih.gov/pubmed/22895402
https://www.ncbi.nlm.nih.gov/pubmed/11720233
https://www.ncbi.nlm.nih.gov/pubmed/11720233
https://www.ncbi.nlm.nih.gov/pubmed/11720233
http://www.sciencedirect.com/science/article/pii/S0262885609000675
http://www.sciencedirect.com/science/article/pii/S0262885609000675
http://spie.org/Publications/Proceedings/Paper/10.1117/12.538035
http://spie.org/Publications/Proceedings/Paper/10.1117/12.538035
http://spie.org/Publications/Proceedings/Paper/10.1117/12.538035
http://www.sciencedirect.com/science/article/pii/S0165011408005368
http://www.sciencedirect.com/science/article/pii/S0165011408005368
http://www.sciencedirect.com/science/article/pii/S0165011408005368
https://www.ncbi.nlm.nih.gov/pubmed/21719256
https://www.ncbi.nlm.nih.gov/pubmed/21719256
https://www.ncbi.nlm.nih.gov/pubmed/21719256
http://www.sciencedirect.com/science/article/pii/S0957417409007787
http://www.sciencedirect.com/science/article/pii/S0957417409007787
http://www.sciencedirect.com/science/article/pii/S0957417409007787
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189096/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189096/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189096/
http://ieeexplore.ieee.org/document/6211580/?reload=true
http://ieeexplore.ieee.org/document/6211580/?reload=true
http://ieeexplore.ieee.org/document/6211580/?reload=true
https://www.researchgate.net/publication/228642047_Brain_tumor_detection_based_on_multi-parameter_MRI_image_analysis
https://www.researchgate.net/publication/228642047_Brain_tumor_detection_based_on_multi-parameter_MRI_image_analysis
https://www.researchgate.net/publication/228642047_Brain_tumor_detection_based_on_multi-parameter_MRI_image_analysis
http://link.springer.com/chapter/10.1007/10704282_1
http://link.springer.com/chapter/10.1007/10704282_1
http://link.springer.com/chapter/10.1007/10704282_1
http://link.springer.com/chapter/10.1007/10704282_1
https://www.ncbi.nlm.nih.gov/pubmed/11161183
https://www.ncbi.nlm.nih.gov/pubmed/11161183
http://ieeexplore.ieee.org/document/5872406/
http://ieeexplore.ieee.org/document/5872406/
http://ieeexplore.ieee.org/document/5872406/
https://www.ncbi.nlm.nih.gov/pubmed/22003719
https://www.ncbi.nlm.nih.gov/pubmed/22003719
https://www.ncbi.nlm.nih.gov/pubmed/22003719
https://www.ncbi.nlm.nih.gov/pubmed/22003719
https://www.ncbi.nlm.nih.gov/pubmed/23790354
https://www.ncbi.nlm.nih.gov/pubmed/23790354
https://www.ncbi.nlm.nih.gov/pubmed/19446435
https://www.ncbi.nlm.nih.gov/pubmed/19446435
https://www.ncbi.nlm.nih.gov/pubmed/19446435
https://www.ncbi.nlm.nih.gov/pubmed/11293691
https://www.ncbi.nlm.nih.gov/pubmed/11293691
https://www.ncbi.nlm.nih.gov/pubmed/11293691
https://science.report/pub/34247859
https://science.report/pub/34247859
https://science.report/pub/34247859
http://www.sciencedirect.com/science/article/pii/S0933365700000737
http://www.sciencedirect.com/science/article/pii/S0933365700000737
http://www.sciencedirect.com/science/article/pii/S0933365700000737
http://www.sciencedirect.com/science/article/pii/S1746809415001068
http://www.sciencedirect.com/science/article/pii/S1746809415001068
http://www.sciencedirect.com/science/article/pii/S1746809415001068
http://www.sciencedirect.com/science/article/pii/S1746809415001068
http://www.sciencedirect.com/science/article/pii/S174680941300092X
http://www.sciencedirect.com/science/article/pii/S174680941300092X
http://www.sciencedirect.com/science/article/pii/S174680941300092X
https://www.researchgate.net/publication/263772158_Texture_Models_for_Brain_Tumor_Segmentation
https://www.researchgate.net/publication/263772158_Texture_Models_for_Brain_Tumor_Segmentation


Citation: Wu G, Ji C, Yu J, Wang Y, Chen L, Shi Z, et al. Automatic Segmentation 
of Glioma from 3D MR Images by Using Location Free Asymmetry Detection. SM J 
Biomed Eng. 2017; 3(1): 1012. Page 9/9

Gr   upSM Copyright  Yu J

33. Juanalbarracín J, Fustergarcia E, Manjón JV, Robles M, Aparici F, L 
Martí-Bonmatí, et al. Automated glioblastoma segmentation based on a 
multiparametric structured unsupervised classification. 2015; 10.

34. Liu X, Chen F. Automatic segmentation of 3-D brain MR Images by using 
global tissue spatial structure Information. IEEE Transactions on Applied 
Superconductivity. 2014; 24: 1-5.

35. Menze B, Reyes M, Leemput KV. The multimodal brain tumor Image 
segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging. 
2014; 99: 1.

36. Kiryati N, Gofman Y. Detecting symmetry in grey level images: The global 
optimization approach. Int J Comput Vis. 1998; 29: 29-45.

37. Vezhnevets V, Konouchine V. Grow cut-interactive multi-label N-D image 
segmentation by cellular automata. Proc Graphicon. 2005; 150-156.

38. Hernandez G, Herrmann HJ. Cellular automata for elementary image 
enhancement. Graphical Models and Image Processing. 1996; 58: 82-89.

39. Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects 
using mean shift. Processing of IEEE conference on computer vision and 
pattern recognition. 2000; 142-149.

40. Otsu N. A threshold selection method from gray level histogram. Automatica. 
1975; 11: 23-27.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125143
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125143
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125143
http://ieeexplore.ieee.org/document/6879311/
http://ieeexplore.ieee.org/document/6879311/
http://ieeexplore.ieee.org/document/6879311/
http://link.springer.com/article/10.1023/A:1008034529558
http://link.springer.com/article/10.1023/A:1008034529558
http://www.graphicon.ru/oldgr/en/publications/text/gc2005vk.pdf
http://www.graphicon.ru/oldgr/en/publications/text/gc2005vk.pdf
http://www.sciencedirect.com/science/article/pii/S1077316996900064
http://www.sciencedirect.com/science/article/pii/S1077316996900064
http://comaniciu.net/Papers/MsTracking.pdf
http://comaniciu.net/Papers/MsTracking.pdf
http://comaniciu.net/Papers/MsTracking.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4310076
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4310076

	Title
	Abstract
	Introduction
	Methods
	The 3D bounding box method
	The reflectional symmetry detection method
	The 3D GrowCut method

	Materials
	Experiments and Results
	Segmentation results of synthetic images
	Segmentation results of clinical images
	Statistical tests

	Discussion and Conclusion
	Acknowledgement
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

