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Introduction
Recently, in many clinical trials, the notion of equivalence and non-inferiority tests have become 

effective standard procedure. In classical or traditional hypothesis tests, well established theory and 
methods can be used to show whether two products or treatments are significantly differ from 
each other. The null hypothesis will be rejected if the test statistic is sufficiently large compared to 
the critical value or if the p-value of the test statistic is sufficiently small compared to the level of 
significance α. More details and the methods for testing the hypotheses can be found in Lehmann 
et al. [1]. However, in pharmaceutical industry, when a new product or a treatment is introduced, 
the main goal is often to demonstrate that the new product or treatment is either equivalent or 
superior to the current or the old product or the treatment. In equivalence studies, the objective 
is to demonstrate that the effect of the new product or treatment is equivalent to the effect of the 
current or the old product or the treatment. Practically it is impossible to show the exact equivalence 
since an infinite sample size is often required. Then one can use an equivalence margin, denoted by 
δ, which defines the range of values for which the effect of the new product or treatment is to be 
considered equivalent to the old product or the treatment. If the effects of the two treatments or 
the products differ by more than the equivalence margin in either direction, then equivalence does 
not hold. For example, we write the hypotheses for testing that the new drug Y is equivalent to the 
existing drug X as

µX and µY are the population means response of the existing drug and the new drug respectively.

In non-inferiority studies, the objective is to demonstrate the new treatment or the product is 
not worse than the existing treatment or the product by more than a pre-specified, small amount 
(δ). If you consider the above example, the null hypothesis is that the new drug (Y) is inferior to 
the existing drug (X) by at least a certain pre-specified amount (δ). The alternative is that the new 
drug (Y) is not inferior to the existing drug (X) by less than that pre-specified amount (δ). More 
specifically,				  

			          vs.	 	          where δ>0.

Here δ is called the non-inferiority margin and it is defined to be strictly positive.  A detailed 
discussion on equivalence and non-inferiority tests are given in Snapinn [2].

There is a well established literature for testing non-inferiority in two-arm trials with normal 
data. An overview of recent methods can be found in Snapinn [2], Walker et al. [3], Munk et al. [4] 
and Wellek [5]. Koti [6] also discuss the non-inferiority hypothesis testing in comparing the ratio of 
two normal means. In this paper, we consider the non-inferiority hypothesis testing with log-normal 
data. The log-normal distribution is appropriate for the random variables that are positive and 
also positively skewed (right skewed). The log-normal distributions are commonly used to model 
the data from many scientific disciplines: geology and mining, human medicine, environment, 
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Abstract

In health related studies, non-inferiority tests are used to demonstrate that a new treatment is not worse than 
a currently existing treatment by more than a pre-specified margin. In this paper we have proposed a Bayesian 
approach and compared it with two other methods available in the literature. We discuss three approaches; 
a Z-score approach, a generalized p-value approach and a Bayesian approach, to test the non-inferiority 
hypotheses in two-arm trials for ratio of log-normal means. The log-normal distribution is widely used to describe 
the positive random variables with positive skewness which is appealing for data arising from studies with small 
sample sizes. We demonstrate the approaches using data arising from an experimental aging study on cognitive 
penetrability of posture control. We also examine the suitability of three methods under various sample sizes 
via simulations. The results from the simulation studies indicate that the generalized p-value and the Bayesian 
approach reach an agreement approximately and the degree of the agreement increases when the sample sizes 
increase. However, the Z-score approach can produce unsatisfactory results even under large sample sizes.

0 1: 		vs.			 : 	where	 0,X Y X YH Hµ µ δ µ µ δ δ− ≥ − < →

0 : X YH µ µ δ− ≥ 1 : X YH µ µ δ− <
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microbiology, plant physiology, ecology, food science, economics etc. 
We refer readers to Eckhard et al. [7] for various applications of log-
normal distribution.

In Section 2, we discuss about the basic properties of log-normal 
distribution, Z-score test approach and a generalized p-value 
approach for non-inferiority hypothesis testing. We then propose a 
Bayesian approach for non-inferiority hypothesis testing in Section 
3. In Section 4, we apply the methods proposed in this paper on a 
data set arising from an experimental aging study on cognitive 
penetrability of posture control. We also assess the suitability of the 
methods for various sample sizes via simulation studies in Section 5. 
We conclude with a short discussion in Section 6 based on results and 
methods discussed in the paper.

Inference for Log-normal Data
Let X (0<x<∞) be a positive random variable from a log-normal 

distribution given by

Note that µ is the location parameter or the log mean and σ 
is the scale parameter or the log standard deviation on the log-
transformation. Figure 1 shows the density curves for different 
values of the location parameter (µ) and the shape parameter (σ). 
The skewness decreases as the value of µ increases and the value of 
σ decreases.

In a two samples problem, let X1 and X2 are two independent log-
normal random variables distributed as

Suppose that X1i, i = 1, 2. . . n1 and X2j, j = 1, 2, . . . , n2 denote 
random samples from X1 and X2, respectively.  Also, let Y1i  = ln(X1i), i 
= 1, 2, . . . , n1  and Y2j  = ln(X2j ), j = 1, 2, . . . , n2.

Let   						      Then the 
problem of our interest is to compare the ratio of two log-normal 
means for non-inferiority. More specifically we test

Note that the mean of log-normal distribution is a function of 
both µ and σ2, and it is difficult to obtain the exact or optimum tests 
for testing hypotheses in 1.

One can use a Z-score approach for the problem of testing two 
log-normal means as introduced by Zhou et al. [15]. A Z-score test 
statistic for testing H0 is given by

When n1 and n2 are both large, the sampling distribution of Z is 
approximately standard normal under H0. The Z-score approach is 
recommended for large samples but for small samples power and type 
I error are too conservative or too liberal.

On the other hand, one can also take a generalized p-value 
approach introduced by Krishnamoorthy et al. [8]. The generalized 
p-value was first introduced by Weerahandi and Tsui [9] as an 
extended version of the classical p-value. In classical p-value method, 
there are a few challenges: difficult to find the suitable test statistic, 
difficult to find the sampling distribution of the test statistic and 
involves many nuisance parameters. The nuisance parameters are 
unknown parameters which are required to construct a realistic 
model but there is no interest in making inferences about them. As 
a result, the exact solution may not exist, hence the approximate 
solution with restrictions may suggest. A comprehensive discussion 
of the generalized p-value is given in the book by Weerahandi [10].

Krishnamoorthy et al. [8] proposed an algorithm for testing 
hypotheses on log-normal means. We extend the approach and 
implement the algorithm in R for testing the non- inferiority 
hypotheses in 1.

Let X1i, i = 1, 2, . . . , n 1, and X2j, j = 1, 2, . . . , n 2, denote random 
samples from the log-normal distributions of X1 and X2 respectively. 
Also, let Y1i = ln(X1i), i = 1, 2, . . . , n 1 and Y2j = ln(X2j ), j = 1, 2, . . . , 
n2. Then define

		  and		          , i=1, 2.

Let		            denote the observed values of

  		  respectively.

Let

where		       and 

for i=1,2 and these random variables are independent. Define 
the generalized test variable

Figure 1: Shape of log-normal distribution for different µ and σ values.
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and let

So that
	           

. Thus the generalized p-value for testing 
the hypotheses in 1 is given by

we develop a Bayesian approach non-inferiority hypothesis 
testing in Section 3.

Bayesian Inference for Log-Normal Data
The main idea behind Bayesian hypothesis testing is to use the 

Bayesian approach for determining the strength of evidence. In the 
frequentist approach for hypothesis testing, inferences are based on 
the probability of data conditioning on the null hypothesis, whereas 
the Bayesian approach is based on the probability of hypotheses 
conditioning on the data. Also, the frequentist approach tests one 
hypothesis, the null hypothesis (H0) against its alternative hypothesis 
(H1). But, the Bayesian approach can test multiple hypotheses and 
takes advantage of prior information.

For the Bayesian hypothesis testing, first we need to find the 
posterior distribution of the unknown parameter θ either analytically 
or by simulation.  Given the posterior distribution and the data 
(x), we simply calculate P(θ ∈ Θ0|x) and decide in favor of the null 
hypothesis (H0) if P(θ ∈ Θ0|x) is sufficiently large. In order to make 
a better comparison of the hypotheses, the prior and posterior 
information can also be combined in a ratio (called Bayes factor) 
unless the posterior probability, (P(θ ∈ Θ0|x)) is close to 0 or 1.

Let X1 and X2 are two independent log-normal random variables 
distributed as

Suppose that X1i, i = 1, 2, . . . , n1 and X2j, j = 1, 2, . . . , n2 denote 
random samples from X1 and X2, respectively. Then the likelihood 
function is given by

Where f (.) is the probability density function.

The choice for a prior distribution on the location parameter (µi) 
is the normal distribution. The obvious choice for a prior on the scale 
parameter ( 2

iσ ) is the inverse gamma distribution, since not only it 
is conjugate, but also the support of inverse gamma distribution is 
restricted to positive real numbers. In notation, we write the prior 
distributions of unknown parameters µ and σ2 as follows

Then,					      and

					   

					     for i= 1,2.

Here, the parameters µ0i,
2
0iσ , αi and βi are assigned fixed values, 

so they are called hyper parameters. One can also add another level 
to the hierarchy as hyper priors. The hyper priors provide more 
information but also they add complexity to the model.

Assuming prior independence, the joint prior distribution θ = 

(
	                

) is

Then the posterior distribution is

              					        (6)

It is difficult to identify the distribution in 6 using distribution 
theory since it is not in the closed form. This leads to obtain the 
distribution in 6 using Markov Chain Monte Carlo (MCMC) 
simulations. To simulate the values from the posterior distribution in 
6, first we need to find the full conditional distributions of µi and 2

iσ .

The full conditional distribution of µ1 is

And the full conditional distribution of µ2 is

The full conditional distribution of 2
1σ  is 
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The derivations of the likelihood function, the joint prior 
distribution, the posterior distribution and the full conditional 
distributions can be found in Wickramasinghe [11]. We proposed a 
Gibbs sampling algorithm using these full conditionals as follows.

1. 		

2. Generate  		         from the full conditionals as 
describe earlier

3. Then repeat the previous step recursively using a loop replacing 
the starting values.

4. The chain of values produced by this procedure is a Markov 
chain, and it converges to its equilibrium distribution which is 

We now derive the prior and posterior predictive distribution of 
a new value y using the joint prior distribution in 5 and the posterior 
distribution in 6.

The prior predictive probability of a new value y is given by

It is difficult to calculate the integral in 7. So f (y) cannot be 
derived directly and we use a Monte Carlo method to sample from f 
(y). To sample from f (y), follow the following steps.

For j = 1 to m,

1. Generate µj from p(µ).

2. Generate 2
jσ from p(σ2).

3. Generate ( )2y 	from	p | 	, 	 .j j jx µ σ∗

End of j loop.

Note that 1 2, ,..... my y y∗ ∗ ∗  are an independent and identically (iid) 
sample from f(y).

The posterior predictive probability of a future observation y, 
given the observed data x is

Again, the distribution in 8 is not in the closed form. So f (y|x) 
cannot be derived directly and we use a Monte Carlo method to 
sample from f (y|x). To sample from f (y|x), follow the following steps.

For j = 1 to m,

1. Generate µj from p(µ, σ2|x).

2. Generate 2
jσ from p(µ, σ2|x).

3. Generate 

End of j loop.

Note that 1 2, ,..... my y y∗ ∗ ∗

 
are an independent and identically (iid) 

sample from f (y|x).

The descriptive statistics of the sample from the posterior 
predictive distribution can be compared to the observed data to 
assess the model fit. If the model fits well, the predictive distribution 
should be relatively likely to the original data. On the other hand, if 
there is a large variation between observed data and the data from the 
predictive distribution, it indicates that the model performs poorly. 
We perform an analysis using predictive simulations in Section 4.

Data Analysis
We illustrate the methods discussed in Section 2 and 3 using 

a published data arising from an experimental aging study from 
Teasdale et al. [12].  The data set consists of the mean sway range in 
the forward-backward plane and the mean sway range in the side-to-
side plane. Note that forward-backward plane and side-to-side plane 
are two methods of physical treatments on penetrability of posture 
control. Nine elderly and eight young adults were participated in 
the experiment. All the participants stood bare- foot on the force 
platform with feet together and arms along the body. They were asked 
to maintain an upright stable posture on the force platform and the 
sway range in the forward-backward plane and the sway range in the 
side-to-side plane were calculated. For each participant, 24 trials were 
given and for each trial, the participants need to maintain an upright 
stable posture on the force platform for 20s. The mean sway ranges 
in the forward-backward plane and in the side-to-side plane were 
calculated and the data are given below with n1 = 17 and n2 = 17.

The mean sway range (in millimeters) in the forward-backward 
plane (X1): 19, 30, 20, 19, 29, 25, 21, 24, 50, 25, 21, 17, 15, 14, 14, 22, 17.

The mean sway range (in millimeters) in the side-to-side plane 
(X2): 14, 41, 18, 11, 16, 24, 18, 21, 37, 17, 10, 16, 22, 12, 14, 12, 18.

Figure 2 and Figure 3 show that the histogram and Q-Q plot of 
the mean sway range in the forward-backward plane and the mean 
sway range in the side-to-side plane respectively. Both histogram 
and Q-Q plot show that the distributions of the mean sway range in 
the forward-backward plane and the side-to-side plane are positively 
skewed (right skewed).

Table 1 also indicates that the distributions of the mean sway 
range in the forward- backward plane and the side-to-side plane 
positively skewed (Mean > Median) 

Figure 4 shows the Q-Q plots for log transformed mean sway 
range in the forward-backward plane and the side-to-side plane 

 Table 1: Descriptive statistics.

		  Forward-backward Side-to-side

Mean 22.47 18.88

Median 21 17

Standard Deviation 8.54 8.53
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and the distributions of the transformed data are more nearly 
normal. This suggests that the distributions of mean sway range in 
the forward-backward plane and the side-to-side plane might follow 
log-normal distributions, but without more information, we cannot 
predict accurately.

We use Kolmogorov-Smirnov (KS) test to access the 
appropriateness of the log-normal distribution for the data as follows,

H0: The mean sway range follows a log-normal distribution

H1: The mean sway range does not follow a log-normal distribution.

Table 2 shows that for both planes, we don’t have sufficient 
evidence to reject the log-normal fit. So we can assume that the log-
normal model adequately describes the mean sway ranges in the 
forward-backward plane and the side-to-side plane.

Table 3 gives the method of moment estimates (MME) and the 
maximum likelihood estimates (MLE) of log-normal parameters for 
the mean sway ranges in the forward-backward plane and the side-
to-side plane. The MME’s and the MLE’s of µ and σ2 are very close 
for both planes.

For illustration purpose, we assume that a practically meaningful 
test is provided by δ′ = 0.01 millimeters. The null hypothesis is that 
the mean sway range in the side-to-side plane (X2) is inferior to the 
mean sway range in the forward-backward plane (X1) by at least 1.01 
millimetres. The alternative is that the mean sway range in the side-to-
side plane (X2) is not inferior to the mean sway range in the forward-
backward plane (X1) by less than 1.01 millimetres. Accordingly the 
hypotheses to be tested are given below

We obtain the generalized p-value of 0.86 using the algorithm 
describe in Section 2. On the other hand, the Z-score approach gives 
a p-value of 0.92. All these results lead to the conclusion that the data 
do not provide sufficient evidence to indicate that the ratio of the 
means of the mean sway ranges in the forward-backward plane and 
the side-to-side plane is less than 1.01.

We now illustrate the Bayesian approach discussed in Section 3. 
Note that the prior distribution of location parameter (µ) is normal 
distribution. When no information is available on µ, a usual choice 
for the prior mean of location parameter (µ0) is the zero. Note that 
this prior choice centers the prior belief of µ around zero. To make 

Figure 2: Graphical summaries of mean sway range in forward-backward 
plane.

Figure 3: Graphical summaries of mean sway range in side-to-side plane.

Figure 4: Q-Q plots for log-transformed mean sway range.

 Table 2: KS test statistic and p-value.

Forward-backward Side-to-side

KS test statistic 0.1262 0.1747

p-value 0.9494 0.6773

 Table 3: The MME’s and the MLE’s of parameters.

Forward-backward Side-to-side

MME of µ 3.05 2.85

MME of  σ2 0.13 0.18

MLE of µ 3.04 2.86

MLE of  σ2 0.11 0.15
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this prior diffuse, we can set the prior variance of location parameter 
( 2

0σ ) to a large value, (for example 10000). The prior distribution of 
scale parameter (σ2) is inverse-gamma distribution. We set α and β to 
a small value, α = β = 0.01.

One can also take an empirical Bayes approach in selecting prior 
parameters using historical data [16]. For example one can set the 
prior variance to a very small value (0.01). The mean (µ) and the 
variance (σ2) of the mean sway range in the forward-backward plane 
are 3.06 and 0.10 respectively. The prior distribution of location 
parameter (µ) is normal distribution. We have set prior mean of 
location parameter (µ0) to 3.06 and the prior variance of location 
parameter ( 2

0σ ) to 0.01. The prior distribution of scale parameter 
(σ2) is inverse-gamma distribution. We have set prior mean of scale 
parameter to 0.10 and the prior variance of scale parameter to 0.01.

This will give α = 3 and β = 0.2. Similarly, for the mean sway range 
in the side-to-side plane, the values of hyper parameters are µ0 = 3.04, 

2
0σ = 0.01, α = 4.3 and β = 0.5. We perform the Bayesian analysis 

under these prior settings. We obtain two random samples (two 
chains) with 10,000 observations from the posterior distributions for 
µ and σ2 of the mean sway range in the forward-backward plane and 

the side-to-side plane. So we have run two chains for 14,000 iterations 
with a burn-in of 4,000.

The first and easiest way to check the convergence of the MCMC 
algorithm is to visually inspect the trace plots or history plots of µ 
and σ2 of the mean sway range in the forward-backward plane and 
the side-to-side plane. Figure 5 (a) shows the history plots of µ of the 
mean sway range in the forward-backward plane. Here we have run 
two chains simultaneously and each chain shows in different colour 
(red or blue). The plots do not show any particular patterns and all 
the chains appear to be overlapping one another and mixing well. 
Similarly, we examined the other parameters of the mean sway range 
in the forward-backward plane and the side-to-side plane and chains 
are mixing well.

To have a more precise view on convergence, we use the Brooks-
Gelman diagnostics which is introduced by Brooks et al. [13] to 
calculate the Brooks-Gelman convergence statistics (Rc). Figure 5 (b) 
plots the Brooks-Gelman diagnostic for µ of the mean sway range in 
the forward-backward plane for two chains of 14000 iterations.  For 
the convergence,

 Rc should be close to 1 and Rc is indeed close to 1, roughly after 
3000 iterations. So we have considered a burn-in period of 4000 
iterations in obtaining posterior summaries.

Figure 6: Perspective plots of the posterior Distribution.

Figure 5: Forward-backward plane for µ. Figure 7: Density curves of η1 and η2.

Figure 8: Density curve of η1 and η2 in one graph.
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The next step is to obtain random samples after the chains are 
settled down to the posterior distribution. Figure 5 (c) shows the 
autocorrelations by lag for µ of the mean sway ranges in the forward-
backward plane for two chains of 6000 iterations. The correlation at lag 
0 is 1 and the rest of the correlations are very close to zero. It indicates 
that we have a random sample from the posterior distribution and the 
thinning is not needed in this case.

Table 4 reports the posterior summaries, Monte Carlo Error 
and sample standard deviation for µ and σ2 of the mean sway range 
in the forward-backward plane and the side-to-side plane. The MC 
Errors of each parameters of both planes less than 5% of the sample 
standard deviations. We have obtained the random samples with 
10,000 independent and identically distributed observations from the 
posterior distributions.

Figure 5 (d) shows the history plots of µ of the mean sway range 
in the forward-backward plane after burn-in. Figure 6 shows the 
perspective plots for the joint posterior of the mean sway range in the 
forward-backward plane and the side-to-side plane. These perspective 
plots make 3D plots of Posterior distributions of a surface over µ-σ2 
plane. The plots clearly show that the joint posterior is unimodal 

Figure 9: Posterior prediction for forward-Backward plane.

Figure 10: Posterior prediction for side-by-side plane.
Figure 11: Histogram of the Z-score statistic, the numbers in parenthesis 
represent (n1; µ1; σ1; n2; µ2; σ2).

indicating that MCMC analysis is more meaningful. Therefore we can 
now make inferences on η1 and η2.

Note that our interest is on η1 and η2. Figure 7 shows the density 
curves of η1 and η2. Figure 8 combines both density curves of η1 and 
η2 into one graph.

We computed Bayesian probability under H0 (P (H0|x)) for testing 
hypotheses in 9 and the value is 0.88. Since P (H0|x) is sufficiently 
large, we decide in favor of Null Hypothesis (H0). This leads to the 
conclusion that the data do not provide the sufficient evidence to 
indicated that the ratio of the means of the mean sway ranges in the 
forward-backward plane and the side-to-side plane is less than 1.01. 
We also examine the prediction ability of the model using posterior 
predictive distribution described in Section 3.

Figure 9 shows the posterior predictions of 10 samples with 10,000 
observations for the mean sway ranges in the forward-backward 
plane. The first boxplot represents the original sample and the next 

Table 4: Posterior estimates of the parameters.
Parameter Estimate MC Error   SD 5%*SD

Forward-Backward µ 3.05 0.0006 0.082 0.0041
σ2 0.12 0.0004 0.046 0.0023

Side-to-Side µ 2.84 0.0007 0.101 0.0051
σ2 0.16 0.0005 0.07 0.0035

Table 5: Descriptive statistics of posterior prediction for forward-backward plane.

Mean Median Inter-quartile range (IQR)

Original 22.47 21 8

Sample1 22.52 21.17 9.38

Sample2 22.36 20.95 9.81

Sample3 23.02 21.32 10.48

Sample4 22.84 21.51 10.03

Sample5 22.87 21.65 9.64

Sample6 23.1 21.91 11.03

Sample7 22.6 21.13 9.9

Sample8 23.05 21.42 9.86

Sample9 22.6 20.75 9.51

Sample10 23.07 21.71 9.7
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10 boxplots represent the predicted samples. We compare the last 10 
boxplots (predicted samples) with the first boxplot (original sample) 
and the observed dataset appears to be consistent with the generated 
datasets.

Furthermore, Table 5 compares the descriptive statistics of the 
predicted samples with the original sample of the mean sway range in 
the forward-backward plane. The mean and median of each predicted 
samples are approximately equal to the mean and median of the 
original sample. But the inter-quartile range of predicted samples are 
higher than the inter-quartile range of the original sample due to the 
heterogeneity of data. Figure 9 and Table 5 lead to the conclusion 
that there is no difference between predicted samples and the original 
sample of the mean sway range in the forward-backward plane.

Similarly, Figure 10 shows the posterior predictions of 10 samples 
with 10,000 observations for the mean sway range in the side-to-side 
plane. The first boxplot represents the original sample and the next 
10 boxplots represent the predicted samples. We have compared the 
last 10 boxplots (predicted samples) with the first boxplot (original 
sample) and it seems that no difference can be claimed.

Table 6 compares the descriptive statistics of the predicted 
samples with the original sample of the mean sway range in the side-
to-side plane. The mean and median of each predicted samples are 
approximately equal to the mean and median of the original sample. 
But the inter-quartile range of predicted samples are higher than the 
inter-quartile range of the original sample due to the heterogeneity 
of data. Figure 9 and Table 5 lead to the conclusion that there is no 
difference between predicted samples and the original sample of the 
mean sway range in the side-to-side plane.

Simulation Studies
We also conducted various simulation studies to compare the 

performance of three methods; Z-score, generalized p-value and 
Bayesian approaches. For Z-score and generalized p-value methods, 
the type I error probabilities for various combinations of n1, n2, µ1, 

2
1σ

and 2
2σ are reported in Table 7. For the simulations, we have taken µ2 = 

0, without loss of generality. The type I error probability corresponds 
to the parameter combinations satisfying 2 2

1 1 2 2
1 1 0.01
2 2

µ µ+ σ − + σ = with 
10,000 runs.

Table 6: Descriptive statistics of posterior prediction for side-by-side plane.

Mean Median Inter-quartile range (IQR)

Original 18.88 17 8.53

Sample1 19.28 17.46 9.51

Sample2 19.26 17.77 9.43

Sample3 18.88 17.31 9.49

Sample4 18.99 17.44 9.94

Sample5 19.04 17.45 9.52

Sample6 19.06 17.73 9.73

Sample7 18.88 17.03 9.17

Sample8 18.79 17.32 10

Sample9 19.17 17.55 9.45

Sample10 19.61 17.68 9.53

Table 7: Size of the generalized p-value test and the Z-score test at 5% signi 
cance level when µ2 = 0 and 

		
vs.  

η1 η2 µ1 σ1
2 σ2

2
Size

Generalized p-value Z-Score

4 4

1.01 2 4 0.0338 0.0098

0.01 3 3 0.0374 0.0375

5.01 2 12 0.0344 0.0001

0.01 12 12 0.0398 0.0166

10 10

1.01 2 4 0.0427 0.0133

0.01 3 3 0.0464 0.0388

5.01 2 12 0.0424 0.0004

0.01 12 12 0.0489 0.026

25 25

0.01 1 1 0.0454 0.0436

0.01 5 5 0.051 0.0447

0.01 10 10 0.0488 0.0382

0.01 100 100 0.0505 0.0342

2.01 4 8 0.0463 0.0199

4.01 8 16 0.0473 0.0137

40 25

0.01 1 1 0.0516 0.0357

0.01 5 5 0.053 0.034

0.01 10 10 0.0533 0.0257

5.01 2 12 0.0483 0.0079

25 40

0.01 1 1 0.049 0.0542

0.01 5 5 0.0471 0.0558

0.01 10 10 0.0502 0.0583

5.01 2 12 0.0489 0.0154

40 40
8.01 4 20 0.0469 0.0148

14.01 4 32 0.0457 0.0121

100 25

0.01 1 1 0.053 0.0293

0.01 5 5 0.0514 0.016

0.01 10 10 0.0482 0.0118

13.01 4 30 0.0494 0.0058

25 100

0.01 1 1 0.0425 0.0666

0.01 5 5 0.0478 0.0819

0.01 10 10 0.0486 0.0847

13.01 4 30 0.0445 0.0262

100 100 13.01 4 30 0.0514 0.0225

200 50

0.01 1 1 0.0534 0.0356

0.01 5 5 0.0502 0.0259

0.01 10 10 0.0498 0.0228

0 1 2:	 0.01H η η− ≥ 1 1 2: 	0.01.H η η− <
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Table 8: Power of the generalized p-value test and the Z-score test at 
5% significance level when µ

2 = 0 and 
		

 vs.	              .

η1 η2 µ1 σ1
2 σ2

2
Power

Generalized p-value Z-Score

4 4

0 4 12 0.1592 0.0347

0 4 20 0.265 0.0358

3 4 12 0.0525 0.0018

4 1 11 0.0693 0.0002

10 10

0 4 12 0.3961 0.229

0 4 20 0.6753 0.4149

3 4 12 0.0849 0.0056

4 1 11 0.1113 0.0041

25 25

1 1 5 0.376 0.2302

1 5 9 0.1536 0.0925

1 10 14 0.1045 0.0658

0 2 4 0.3582 0.3136

0 7 9 0.1369 0.1066

40 25

1 1 5 0.4051 0.2365

1 5 9 0.1766 0.0821

1 4 9 0.305 0.1716

1 9 14 0.1598 0.0831

25 40

1 1 5 0.4656 0.378

1 5 9 0.16 0.1566

1 4 9 0.3005 0.2746

1 9 14 0.1527 0.1489

100 25

1 1 5 0.4187 0.2344

1 5 9 0.2003 0.0777

0 1 2 0.4192 0.274

0 1 3 0.705 0.5452

1 4 7 0.1294 0.0434

1 9 12 0.0871 0.0262

25 100

1 1 5 0.6665 0.6602

1 5 9 0.1895 0.2485

0 1 2 0.4006 0.4751

0 1 3 0.8155 0.8511

1 4 7 0.1235 0.1608

1 9 12 0.0783 0.1246

For smaller values of n1 and n2 (n1 < 25 and n2 < 25), Z-score test 
has type I error probabilities which are too small , whereas the test 
based on generalized p-value is extremely satisfactory for controlling 
type I error probability.  For H1: η1 − η2 < 0.01, the Z-score test type I 
error probabilities which are too small when n1 > n2, and they are too 
large when n1 < n2. The histogram in Figure 11 (d), is skewed to the 
right and the corresponding type I error probability to the Z-score 
test is too small. On the other hand, the histogram of Z-score statistics 
in Figure 11 (f), is skewed to the left and the corresponding type I 
error probability to the Z-score test is too large. But, the test based 
on the generalized p-value controls type I error quite satisfactorily, 
regardless of n1 and n2.

The power for various combinations of n1, n2, µ1, 
2
1σ and 2

2σ are 
reported in Table 8. For H1: η1 − η2 < 0.01, when n1 > n2, the Z-score 
test has a smaller power compared to the generalized p-value test. 
On the other hand when n1 < n2, the Z-score test has a larger power 
compared to the generalized p-value test.  Also, there are situations 
where the power of the Z-score test is smaller than the significance 
level of 0.05 (last row in Table 8), indicating that Z-score test is biased.

Zhou et al. [15] claimed that, when both n1 and n2 are large, the 
distribution of the Z-score statistic is approximately standard normal 
under H0. The histogram of the Z-score statistic in Figure 11 indicate 
that the distribution of Z-score statistic is skewed when both sample 
sizes are large as 100 but (n1, µ1, 

2
1σ ) is not approximately equal to 

(n2, µ2,
2
2σ ). So the normal approximation is appropriate only when 

both samples are very large and (n1, µ1,
2
1σ ) is approximately equal 

to (n2, µ2,
2
2σ ).

Table 9 shows the generalized p-value and the Bayesian 
probabilities for testing hypothesis 9. The generalized p-value has 
performed well for both large and small samples. The Bayesian 
probabilities also perform very well and indicate a very good 
agreement in conclusion based on the Bayes factor. The Bayes factor 
is not calibrated, so one of the future researches is to develop a robust 
method to compare the Bayesian approach and the generalized 
p-value approach using the relative belief ratio as discussed in 
Muthukumarana and Evans [14].

Discussion
In this article, we have derived a Bayesian Inference procedure 

for testing non-inferiority hypothesis testing for the ratio of two 
independent log-normal means. In non-inferiority studies, the 
objective is to demonstrate the new treatment or the product is not 
worse than the existing treatment or the product by more than a pre-
specified, small amount (δ).

The mean of log-normal distribution is a function of both µ and 
σ2 and it is difficult to obtain exact or optimum tests for testing non-
inferiority hypotheses. Zhou et al. [15] have introduced the Z-score 
approach for the problem of testing the equality of two log- normal 

50 200

0.01 1 1 0.0439 0.0535

0.01 5 5 0.0532 0.0711

0.01 10 10 0.0477 0.0739

200 200 24.01 12 60 0.05 0.0319

40.01 2 82 0.0491 0.0272

0 1 2: 	 	 0.01H η η− ≥ 1 1 2: 	 	 0.01H η η− <
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100 100

0 1 2 0.6717 0.5147

0 1 3 0.8314 0.7157

1 1 5 0.3157 0.2914

1 5 9 0.2714 0.2213

50 200

1 1 4 0.5116 0.5043

1 5 8 0.1495 0.186

0 1 2 0.6831 0.7067

0 1 3 0.9801 0.9847

0 1 2 0.6831 0.7067

0 1 3 0.9801 0.9847

200 50

1 1 4 0.3175 0.213

1 5 8 0.1469 0.0765

0 1 2 0.6126 0.515

1 1 4 0.3175 0.213

1 5 8 0.1469 0.0765

0 1 2 0.6126 0.515

200 200

0 1 2 0.7156 0.6012

0 1 3 0.9701 0.9574

1 1 4 0.3027 0.2644

1 5 8 0.2223 0.2057

300 25 0.8 12 18 0.0589 0.0228

Table 9: The generalized p-value and the Bayesian probabilities under H0 and H1 when µ2 = 0 and 		   vs	           .

η1 η2 µ1 σ1
2 σ2

2
Generalized p-value P(H0 | x) P(H1 | x) Bayes Factor

0.7334 0.9561 0.0439 23.6883

4 4 0 3 14 0.0121 0.3709 0.6291 0.6413

4 4 0.01 3 3 0.616 0.7212 0.2788 2.8136

25 25 0 3 0 0.9994 1 0 ∞

25 25 0 3 14 0.0001 0 1 0

25 25 0.01 3 3 0.3425 0.9154 0.0846 11.7689

25 4 0 3 0 0.9998 0.9977 0.0023 47.1811

25 4 0 3 14 0.0001 0.2085 0.7915 0.2865

25 4 0.01 3 3 0.3305 0.8804 0.1196 8.0065

4 25 0 3 0 0.9916 0.7483 0.2517 3.2336

4 25 0 3 14 0.0249 0.0324 0.9676 0.0364

4 25 0.01 3 3 0.8359 0.9298 0.0702 14.4061

100 100 0 3 0 1 1 0 ∞

100 100 0 3 14 0 0 1 0

100 100 0.01 3 3 0.1671 0.8388 0.1612 5.6596

means and we have extended this idea for testing non-inferiority 
hypotheses. This approach is recommended for large samples but for 
small samples the power and the type I error are too conservative or 
too liberal. Although, the samples are large, still there are situations 
where the Z-score test is unsatisfactory. But, the Z-score test performs 
well in terms of the power and the type I error when the µ’s and σ2’s 
close to each other under large sample sizes.

There are also few challenges in classical p-value method in 
hypothesis testing such as difficult to find the suitable test statistics, 
difficult to find the sampling distribution of the test statistic and 
involves many nuisance parameters. To overcome these challenges, 
Tsui and Weerahandi [9] introduced the concept of generalized 
p-value approach.

We utilized the generalized p-value approach for testing non-
inferiority hypotheses. The generalized p-value approach controls 
type I error quite satisfactorily, regardless of n1 and n2. The generalized 
p-value approach has performed well for both large and small 
samples but the Bayesian approach also showed a good agreement 
with conclusion in non-inferiority hypothesis testing.
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