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Introduction
Multiple testing problems are common in pharmaceutical statistics and in lifesciences research 

in general. It is well known that testing multiple hypotheses (multiple testing) can inflate the 
type-I error dramatically if performed without proper adjustments of the p-values or significance 
level cutoffs. This is referred to as a “multiplicity issue”. In clinical trials, multiplicity can come 
from different sources, including (1) multiple treatment comparisons, (2) tests performed at 
different times during the study, such as in adaptive trials, (3) tests for several endpoints, and (4) 
tests conducted for multiple populations using the same treatment(s) within a single experiment 
[1]. In their review of multiple testing in clinical trials [2], provided motivating examples where 
multiplicity issues may exist. A few of these examples include: (A) A clinical trial that compares 
two doses of a new treatment to a single control with respect to the primary efficacy endpoint may 
have a multiplicity issue. (B) In a clinical trial, there may be two endpoints. Multiplicity may exist 
if at least one is required to be statistically significant to claim efficacy versus if both need to be 
statistically significant. (C) In a trial with three specified primary endpoints E1, E2 and E3, it may be 
required that either E1 needs to be statistically significant or both E2 and E3 need to be statistically 
significant to claim efficacy. (D) In a trial with two endpoints, it may be required that one of the two 
specified endpoints must be statistically significant with superiority and the other one shown to be 
noninferior.

The main purpose of multiple testing procedures is to (strongly) control the Familywise type-I 
Error Rate (FWER), i.e., to control the type-I error rate at or below the nominal level under any 
combination of hypotheses. A multiple testing procedure can be a single-step data-independent 
procedure, such as Bonferroni’s method, or a data-dependent stepwise procedure such as Hochberg’s 
step-up and Hommel’s stepwise procedures. The methods may be described as α-exhaustive or 
α-conservative. An α-exhaustive procedure is a closed testing procedure based on intersection 
hypothesis tests the size of which is exactly α [3,4]; in other words, the maximum type-I error rate 
under any combination of hypotheses is equal to α. In an α-conservative approach, the type-I error 
rate is controlled at or below the nominal level, often by dividing α between the hypothesis tests. 

Conceptually, stepwise procedures are typically more powerful than single-step procedures; while  
α-exhaustive procedures tend to be more powerful than α-conservative approaches.

In this paper we proposed a simple one-step α-exhaustive procedure that can improve power 
2%-5% over Hochberg’s and Hommel’s methods in common study designs where the test statistics 
are independent. The method can also be generalized to be applied to dependent test statistics. The 
idea behind our method is to construct the stopping rules using the product of marginal p-values 
and to control the upper bounds of the kth order terms so that α is exhausted for any configuration 
of k null hypotheses. Such upper bounds, or critical values, are determined progressively from k = 1 
towards k = K, where K is the total number of null hypotheses in the problem. Unlike more common 
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stepwise test procedures where every step in the decision rule will 
only involve one critical value for decision-making, the proposed 
α-exhaustive approach is a single-step method with multiple critical 
values involved in the decision rules at the same time.

The paper is organized as follows. In Section 2, we will review 
several important stepwise test procedures that will be used in our 
power comparisons. In Section 3, we elaborate our progressive 
α-exhaustive procedure for two-hypothesis testing. We outline the 
idea, derive the formulations for critical values, and provide examples 
of using this procedure in comparison with other methods. We also 
provide the power formulation for the α-exhaustive procedure for 
two- hypothesis testing. In Section 4, we provide power comparisons 
among several different methods using simulation. In Section 5, we 
extend the α-exhaustive procedure to three-hypothesis testing, and 
compare with Hommel’s procedure in power under broad conditions. 
In Section 6, we further describe the α-exhaustive procedure for 
general K-hypothesis testing. In the last section, discussion and 
summary are provided. To make the procedure ready for practical 
use, we have included the SAS code in the Appendix.  

Multiple Testing Procedures
Stepwise procedures are different from single-step procedures 

in the sense that a stepwise procedure must follow a specific order 
to test each hypothesis. In general, stepwise procedures tend to be 
more powerful than single-step procedures because the stepwise 
methods test hypotheses sequentially, allowing a data-dependent  
α-sharing between the tests, resulting in larger significance cutoffs 
than the single-step procedures where all hypotheses are tested 
simultaneously.

There are three categories of stepwise procedures that are 
dependent on how the stepwise tests proceed: step-up, stepdown, 
and fallback procedures. The commonly used stepwise procedures 
include the Bonferroni-Holm stepdown method [5], the Holm 
stepdown method [4], Hommel’s step-up procedure [6], Hochberg’s 
step-up method [3], the fallback procedure [7], and the sequential test 
with fixed sequences [8].

Stepdown procedure

A stepdown procedure starts with the most significant p-value 
and ends with the least significant p-value. In the procedure, the 
p-values are arranged in an ascending order, i.e., from the smallest 
to the largest: 

      (1)

with the corresponding hypotheses

  

The test proceeds from H(1) to H(K). If ( ) ( )1,...,kkp C k Kα> = , retain 
all ( ) ( )iH i k≥ ; otherwise, reject H(k) and continue to test H(k+1). Ck 
values are differ for the different multiple testing procedures.

The adjusted p-values are 

                     

      (2)

An alternative test procedure is to compare the adjusted p-values 
against the unadjusted α. After adjusting p-values, one can test the 
hypotheses in any order.

Holm Stepdown procedure

Suppose there are K hypothesis tests ( )1,...,iH i K= . The Holm 
stepdown procedure [4,5] can be outlined as follows:

Step 1. If ( )1p Kα≤ , reject H(1) and go to the next step. Otherwise 
retain all hypotheses and stop.
Step i (i = 2,….,K-1). If ( )1 2 1 1Pr p p pα α≤ ∩ ≤ , reject H(i) and go to 
the next step. Otherwise retain ( ) ( ),....,i KH H and stop.
Step K. If ( )Kp α≤ , reject H(K). Otherwise retain H(K).

The adjusted p-values are given by

       

      (3)

The adjusted p-values can be used for hypothesis testing as was 
described for stepdown procedures in general.  

Fallback procedure [7]

The Holm procedure is based on a data-driven order of testing, 
while the fixed-sequence procedure is based on a prefixed order 
of testing. A compromise between them is the so-called fallback 
procedure. The fallback procedure was introduced by Wiens [7] and 
was further studied by Dmitrienko, Wiens, and Waterfall [9] and 
Hommel & Bretz [10]. The test procedure can be outlined as follows:

In the fallback procedure, we allocate the overall error rate α 
among the hypotheses according to their weights wk, where 0kw ≥  
and 1kk

w =∑ . For fixed sequence test, w1 = 1 and 2 ... 0kw w= = = .

Step 1: Test H1 at α1 = αw1. If 1 1p α≤ , reject this hypothesis; 
otherwise retain it. Go to the next step.

Step 2,...., 1i K= − : Test Hk at 1k k kwα α α−= +  if Hk-1 is rejected 
and at αk = αwk if Hk-1 is retained. If k kp α≤ , reject Hk; otherwise 
retain it. Go to the next step.

Step K: Test HK at 1K K Kwα α α−= +  if HK-1 is rejected and at 
αK = αwK if HK-1 is retained. If K Kp α≤ , reject HK; otherwise retain it.

The formula for the adjusted p-value is complicated to be written 
explicitly, therefore, only the significance level is being adjusted, not 
the p-value.

Step-up procedure

A step-up procedure starts with the least significant p-value and 
ends with the most significant p-value. The procedure proceeds from 
H(K) to H(1). If, ( ) ( ),...,1kkP C k Kα≤ = , reject all ( ) ( )iH i k≤ ; otherwise, 
retain H(k) and continue to test H(k-1).

The adjusted p-values are

        
      (4)

( )( )
( ){ 1 1 1

1max , , 2,...., .k k k k

p C p

p p C p k K−

=

= =

( )( )
( ){ 1 1min , 1 1,...,1.
K

k k

p if k K
k p K k p if k Kp

+ +

=

− + = −=

( )( )
( ){ 1

,

min , , 1,...,1.
K K K

k k k k

p C p

p p C p k K+

=

= = −

( ) ( ) ( )1 2 ... Kp p p≤ ≤ ≤

( ) ( ) ( )1 2, ,..., .KH H H
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Hochberg Step-up procedure

Step 1: If ( )Kp α> , accept H(K) and go to Step 2; otherwise reject all 
null hypotheses and stop.

Steps 2,...., 1k K= − : If ( )1K kp kα− + > , accept H(K-k+1) and go to 
Step k+1, otherwise reject all remaining null hypotheses and stop.

Step K: If ( )1p Kα> , accept H(1); otherwise reject H(1).

The constants Ck for the Hochberg step-up procedure are Ck = 
K- k +1 (k = 1,…,K). The Hochberg step-up method does not control 
FWER for all correlations, and is conservative when p-values are 
independent (Westfall, et al., 1999, p.33) [8].

As a reference for determination of Ck for various methods, one 
can refer to the book by Dmitrienko, Tamhane, and Bretz, F. (2010) 
[4].

Progressive α-Exhaustive Testing Procedure
An α-exhaustive procedure is a closed testing procedure based 

on intersection hypothesis tests the size of which is exactly α 
(Grechanosky and Hochberg, 1999; Demitrienko, et al. 2010)[3,4]. 
In other words, in an α-exhaustive procedure, the supremum of the 
probability of false rejection in any null hypothesis configuration 
is equal to α; equivalently, Pr (Reject HI ) = α for any intersection 
hypothesis HI, { }1,...,I K⊆ .

Many of the currently available stepwise test procedures are not 
α-exhaustive which provides a natural area for improvement; however 
it is worth noting that an α-exhaustive procedure is not necessarily a 
powerful test. For example, a fixed sequence test is an α-exhaustive 
test but if the sequence of tests is chosen inappropriately, it may also 
be the least powerful test.

First we will discuss the situation of testing two-hypotheses:

       (5)

Here kH  is the negation of Hk, k = 1, 2. In this setting, if either 
H1 or H2 is rejected, the null hypothesis Ho is rejected. Let p1 and p2 
be the marginal p-values for testing H1 and H2, respectively. For the 
development of a progressive α-exhaustive testing procedure, we will 
borrow strength from marginal p-values to aid in the decision for 
rejection or fail to rejection of the null hypothesis.

The decision rules of the proposed progressive α-exhaustive 
testing procedure are as follows:

If 1 2 1p p α≤  and 1p α≤ , then reject H1,

If 1 2 2p p α≤  and 2p α≤ , then reject H2,

where critical value α1 > 0 and α2 > 0 and are determined such 
that when both H1 and H2 are true, the type-I error will not exceed α.

The idea behind this procedure is to borrow strength among 
marginal p-values. In plain language, the procedure does not require 
an α adjustment, as long as 1p α≤  and the other p-value p2 is small. 
For example, if p1=α and p2 = 0.01α (see the next section), we can 
reject H1.

With appropriate selection of α1 and α2, the procedure will control 
the FWER strongly while simultaneously exhausting all α under all 
the null hypothesis configurations: H1, H2, and 1 2H H . This is done 
progressively as described below.

Step 1: Consider when only H1 is true and H2 is not true. If, for 
example, the test drug is very effective with respect to H2, p2 will be 
very close to 0.

The resulting probability that 1 2 1p p α≤  will be equal 
to 1. Therefore, to control FWER, a necessary condition is 

( ) ( )1 2 1 1 1 2 1 1sup Pr sup Prp p p H H p Hα α α α≤ ∩ ≤ ∩ = ≤ = . Type-I 
error is strongly controlled and exhausted when 1 2H H∩  is true. We 
can reach the same conclusion when 2 1H H∩  is true.

Step 2: Now we need to determine α1 and α2 to exhaust α when 
1 2H H  is true. In this paper, we only consider the case when the two 

test statistics, p1 and p2, are independent.

Under the global null hypothesis H0, p1 and p2 are independent 
and identically distributed as U (0, 1) random variables, which can 
be equivalently expressed as two independent standard normal test 
statistics:         and          under H0. However, working on the p-scale, 
the testing procedure can be used for different endpoints (normal, 
binary, survival).

Since 1 2 1T p p α= <  implies 1
2

1

p
p
α

< , we have the conditional cdf for 
T:

                                                                                        (6)

If 1α α≥ , then                     . 

If 1α α< , then (see Figure 1 for a geometric  interpretation)

                                 

      (7)

Thus,

     

      (8)

0 1 2 1 2: : .H H H Versus H H Hα∩ ∪

( )
1

1

1 11

1 1

1, 1

1 1 , 1

p
T p

p p

F T p
α

α αα
≥

<

< = 


( ) ( )1 2 1 1 1 2 1 1 2Pr , Pr ,p p p H H p H Hα α α α≤ ∩ ≤ = ≤ =

Figure 1: Area under Curve represents the probability, ( )1 2 1 1Pr p p pα α≤ ∩ ≤  .
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Consequently, the type-I error rate under 1 2H H∩ , denoted 
FWER ( )1 2H H∩  is given by

    

       

      (9)

Assuming that ( )2
1 2min , ,α α α≤

 

As a resut,

              (10)

However, if ( )2
1 2min ,α α α>  (see Figure 2), then the probability 

becomes

      

       

      (11)

To summarize the type-I error rates under various null 
configurations, we have 

      

       (12)

  

      

               (13)

where 

The next step is to determine α1 and α2 such that 
( )1 2FWER H H α∩ = .

Note that we do not consider 1α α≥ , because 1 2 1p p α≤ in the 
rejection criteria has no effect. In fact, ( ) 2

1 2 2FWER H H α α α∩ = − =  
will have no solution for any α between 0 and 1. Similarly, we don’t 
consider α1< α2 either, because it makes the conditions, p1<α and p2<α, 
have no effect in determining the rejection boundary. The equation, 

 

has no solution for 2 2
1 2andα α α α< < . Therefore, the only relevant 

scenario is where

                      
               (14)

From (14), we can determine the rejection boundaries α1, α2 for 
given α using the following procedure:

(1) choose α1 such that 2
1α α α≤ < . (2) let ( )1 2FWER H H α∩ =  to 

solve for α2, where  α2 is the solution of

                

               (15)

Examples of stopping boundaries from (15) are presented in 
Tables 1 and 2.

When α1 = α2, (15) can be simplified as

      

       (16)

( )
( )
( ) ( )

( )( )

1 2

1 2 1 1 1 2 2 2

1 2 1 1 1 2 2 2

1 2 1 2 1 2

Pr

Pr Pr

Pr min , .

FWER H H

p p p p p p

p p p p p p

p p p p

α α α α

α α α α

α α α α

∩

= ≤ ∩ ≤ ∪ ≤ ∩ ≤

= ≤ ∩ ≤ + ≤ ∩ ≤

− ≤ ∩ ≤ ∩ ≤

( )( ) ( ) 2
1 2 1 2 1 2 1 2Pr min , Pr .p p p p p pα α α α α α α≤ ∩ ≤ ∩ ≤ = ≤ ∩ ≤ =

( ) ( )2 2
1 2 1 1 2 2 1 2

1 2

ln ln , min , .FWER H H forα αα α α α α α α α
α α

   
∩ = + + + − ≤   

   

( )
( )

( )

( ) ( ) ( )

1 2

1 2

1 2 1 1 2

min ,
1

1 10 min ,
1

2

1 2 1 2
1 2

Pr

min , min , ln
min ,

p p p p

dp dp
p

α α α α

α α α

α α α

αα

αα α α α
α α

≤ ∩ ≤ ∩ ≤

 
= + 

 
  

= +      

∫ ∫
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( ){ 1

2

FWER H
FWER H

α
α

=
=

( )1 2

2
1

2 2
1 1 2 2 1

1 2

2
2

1 1 2 2 min 1
1 2
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ln ln ,
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FWER H H
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− >
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( )min 1 2min , .α α α=

( )
2

1 2 1 1 2 2 1
1 2 1

ln ln 1 lnFWER H H α α αα α α α α α
α α α

      
∩ = + + + − + =             

( )2 2
1 1 2 2 1 2

1 2

ln ln , min ,α αα α α α α α α α α α
α α

   
+ + + − = ≤ ≤   

   

Table 1: Stopping Boundaries for One-Sided α = 0.025.

α1 0.000650 0.001000 0.002000 0.003000 0.004000 0.004855 0.005000

α2 0.014884 0.012856 0.009378 0.007282 0.005814 0.004855 0.004714

Table 2: Stopping Boundaries for One-Sided α = 0.05.

α1 0.000435 0.002500 0.004000 0.005000 0.006000 0.007000 0.008000 0.010097

α2 0.50000 0.025265 0.020078 0.017610 0.015607 0.013934 0.012508 0.010097

The stopping boundaries for various α with α1 = α2 are presented 
in Table 3.

The rejection boundaries in Tables 1, 2 and 3 have been verified 
each by 10,000,000 simulations.

When α1 = α2, the power of the α-exhaustive procedure for the 
two-hypothesis at one-side α-level can be written as

2
1 1

1

2 ln .αα α α α
α

  
+ − =  

  

Table 3: Stopping Boundary for One-Sided Test when α1= α2. 

α 0.005000 0.010000 0.025000 0.050000 0.075000 0.100000

α1, α2 0.000941 0.001897 0.004855 0.010097 0.015739 0.021798

Figure 2: Area under Curve represents the probability, 
( )1 2 1 1Pr p p pα α≤ ∩ ≤

.
( ) 2 2

1 2 1 1 2 2 1
1 2

ln ln ,FWER H H α αα α α α α α α α
α α

   
∩ = + + + − ≤ ≤   

   

( ) ( ) ( ) ( )( )({ }1 2 1 1 2 1 2Pr min , , .Power z z z z H Hα α= Φ − Φ − ≤ ∩ Φ − Φ − <



Citation: Chang M, Deng X, Balser J and Bliss R. Progressive Alpha-Exhaustive Multiple 
Testing Procedure with Independent Test Statistics. SM J Biometrics Biostat. 2016; 1(1): 1003.

Page 5/8

Gr   upSM Copyright  Chang M

As a comparison, the power of Hommel’s procedure for the two-
hypothesis at one-sided α -level can be written as

Illustrative example

Suppose in the Statistical Analysis Plan for a cardiovascular trial with 
two primary endpoints (note these are not co-primary endpoints 
that have to be met simultaneously), the two test statistics for the 
two hypotheses (H1 and H2) of the endpoints are assumed to be 
independent, and the α-exhaustive procedure (with a one-sided 
α1 = α2 = 0.004855 and α = 0.025) was specified for the multiplicity 
adjustment to control FWER. At the end of trial, the p-values for 
the two endpoints are: scenario (1) one-sided p1 = 0.024 and p2 = 
0.025, scenario (2) p1 = 0.024 and p2 = 0.2, (3) p1 = 0.05 and p2 = 0.02, 
(4) p1 = 0.01 and p2 = 0.26, and (5) p1 = 0.012 and p2 = 0.5. Using 
the α-exhaustive procedure for scenario (1), we reject both H1 and 
H2 because 1 2 1 10.0006 0.024p p pα α= ≤ ∩ = ≤  to reject H1 and 

1 2 1 20.0006 0.025p p pα α= ≤ ∩ = ≤  to reject H2. For scenario (2), we 
reject H1 but not H2  because              and  
            . For scenario (3), we reject H2, but 
not H1. For scenario (4), we reject H1 but not H2. For scenario
(5), we can reject neither H1 nor H2.

Using the test procedures described in Section 2, we summarize 
the rejection status in Table 4. The α-exhaustive procedure can reject 
at least one hypothesis except for scenario (5), where the method 
fails to reject a hypothesis because it emphasizes the consistency of 
the evidence against all the hypotheses, and such consistency is not 
presented in this scenario.

Table 4: Rejection with Different Test Procedures.

Method
Scenario

1 2 3 4 5

Fixed Sequence H1, H2 H1 H1 H1

Bonferroni H1 H1

Fallback  (w1  = 0:5) H1 H1

Holm-Stepdown H1 H1

Hochberg H1, H2 H1

Hommel H1, H2 H1 H1

α-exhaustive H1, H2 H1 H2 H1

Note: One-sided α= 0.025, α1= α2= 0.004855 for α-exhaustive.

during a 28-day cycle. The log rank test will be used for the analysis 
of PFS. The overall FWER on the primary efficacy endpoint of PFS 
was controlled at a one sided 0.025 significance level. The hazard 
ratio between the two treatment groups was 0.3 for gBRCAmut 
Cohort with p-value p1 = 0.001 and 0.5 for the non-gBRCAmut with 
p-value p2 = 0.002. Using α1 = α2 = 0.004855 for the rejection criteria, 
because p1p2 < α1 and p1 < α, H1 is rejected. The treatment effect is 
significance in gBRCAmut cohort. Similarly, because p1p2 < α1 and p2 
< α, H2 is rejected as well. The treatment effect is also significance in 
non-gBRCAmut cohort. (Due to confidentiality concerns, we adopt 
changes to mask the data and to fit the purpose of the methodological 
illustrations).

Power Comparisons of Two Hypotheses
There may be a general impression that regardless of the multiple 

testing procedure applied, the power of rejection will be approximately 
the same and cannot be improved in a two-hypothesis testing 
scenario. This is not necessarily true. We have compared power of 
seven different testing methods described in Section 2 and presented 
results in Table 5, where Power1 is the probability of simultaneously 
rejecting 1 1: 0H δ ≤  and 2 2: 0H δ ≤ , and Power is the probability 
of rejecting either H1 or H2. For the fallback procedure the weights w1 
= w2 = 0.5 are used. The fixed sequence method is equivalent to the 
fallback procedure with w1 = 1 and w2 = 0.

The progressive α-exhaustive procedure performs the best overall, 
while the Hommel method performs the second best. In general, 
Holm procedure is uniformly more powerful than the Bonferroni 
procedure. Hochberg’s procedure is uniformly more powerful than 
Holm’s procedure and Hommel’s procedure is uniformly more 
powerful than Hochberg’s procedure. The Holm, fixed-sequence, 
and fallback procedures are nonparametric and control FWER for 
any joint distribution of test statistics. The Hommel and Hochberg 
procedures are semiparametric and control FWER for only some joint 
distributions, including positively dependent test statistics such as 
multivariate normal test statistics. Nonparametric procedures make 
no assumptions about the joint distribution of test statistics which 
results in a loss of power [11]. For two-hypothesis testing, Hochberg’s 
method is equivalent to Hommel’s method. The power of the fallback 
method depends on the weights wi and the order of the hypotheses. 

Table 5: Power Comparisons for Two-Hypothesis Testing (δ2 = 0.3, σ= 1).

Method
        δ1 = 0.3        δ1 = 0.15 δ1 = 0

Power1 Power Power1 Power Power1 Power

Fixed Seq (H1, H2) 0.640 0.800 0.224 0.280 0.020 0.025

Fixed Seq (H2, H1) 0.640 0.800 0.224 0.800 0.020 0.800

Bonferroni 0.529 0.926 0.150 0.727 0.009 0.731

Fallback  (H1, H2) 0.590 0.926 0.168 0.784 0.010 0.730

Fallback  (H2, H1) 0.590 0.926 0.214 0.783 0.018 0.731

Holm 0.652 0.926 0.233 0.784 0.019 0.730

Hochberg 0.660 0.933 0.241 0.791 0.020 0.732

Hommel 0.660 0.933 0.241 0.791 0.020 0.732

Progressive α-Ex 0.660 0.962 0.240 0.843 0.020 0.712

Note: sample size = 90, one-sided α = 0.025, α1 = α2 = 0.004855 for Progressive 
α-Exhaustive.

( ) ( )( ) ( ) ( )( ){ }1 2 1 2 1 2Pr max , min , 2 ,Power z z z z H Hα α= Φ − Φ − ≤ ∪ Φ − Φ − <

Trial example

In a recent Phase 3, Randomized, Double-Blind Trial of a PARP1/2 
Inhibitor Drug versus Placebo in Patients with Ovarian Cancer, the 
objective was to evaluate the primary endpoint of Progression Free 
Survival (PFS) in a cohort of patients with Germline Breast Cancer 
Susceptibility Gene (BRCA) mutation tumors (gBRCAmut cohort) 
and in a separate, independent cohort of patients with high grade 
serous or high grade predominantly serous histology who were not 
gBRCAmut carriers (non-gBRCAmut cohort). Over 100 international 
study sites were planned to enroll a total of 540 patients with 180 in the 
gBRCAmut cohort and 360 to non-gBRCAmut cohort. Patients were 
randomized to the treatment and placebo with randomization ratio 
2:1. The drug or placebo was administered once daily continuously 

1 2 1 10.0048 0.024p p pα α= ≤ ∩ = ≤

1 2 2 20.0048 0.2p p pα α= ≤ ∩ = >
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A comparison of Hommel’s method to use of the α-exhaustive 
method with different α1 and α2 is presented in Table 6. For α-Ex1, 
α1= α2 = 0.004855; α-Ex2, α1= 0.003355, α2 = 2α1; α-Ex3, α1 = 0.003798, 
α2 = 1.6 α1; α-Ex4, α1= 0.004332; α2= 1.25 α1; α-Ex5, α2= 0.004332, α1= 
1.25 α2. From the table, we can see that all α-exhaustive procedures 
perform well except α-Ex5, in which the treatment effect δ1 is smaller 
than δ2, and alphas were set up in the wrong direction (α1=1.25α2>α2). 
In general, α1 should be chosen larger than α2 if δ1 is expected larger 
than δ2; otherwise choose 1 2α α≤ .

The critical values α1, α2, and α3 are determined by all the paired null 
hypotheses: 1 2H H∩ , 2 3H H∩ , and 1 3H H∩ . To exhaust FWER, it 
necessarily requires that ( )1 2FWER H H α∩ = , ( )2 3FWER H H α∩ = , and 

( )3 1FWER H H α∩ = , which are equivalent to (Appendix), respectively,

       

              

               (18)

The equations in (18) are of the same expression as we saw in 
equation (15). Therefore, the critical values in Tables 1, 2 and 3 can 
also be used as solutions to (18).

To exhaust α under 1 2 3H H H∩ ∩ , it requires that 
( )1 2 3FWER H H H α∩ ∩ = , that is (assume α1 = α2 = α3, Appendix),

      

               (19)

Now we can use (18) to determine α1, α2, and α3 and use (19) to 
determine α4 for the case when α1 = α2 = α3. Examples of such stopping 
boundaries for various α are presented in Table 7.

The critical values can also be determined through simulations 
which can provide a convenient solution when dimension is high: for 
given (α1, α2, α3), we can use simulation by trying different α4 until 

( )1 2 3FWER H H H α∩ ∩ = . We have verified the critical values through 
simulations: for α = 0.025 and α1 = α2 = α3 = 0.004855, α4 = 0.002677; 
the type-I error rate is 0.025003 under 1 2 3H H H∩ ∩  through 
10,000,000 simulations. This progressive method to determine the 
stopping boundaries can be generalized to K-hypothesis testing using 
a similar procedure.

The critical values in Table 7 are typical values for the multiple 
testing, from which further optimization can be by select critical 
values that maximize the power. If we prior distribution, g (δ1, δ2, 
δ3), we can simulations by trying different values for α1, α2, and α3 to 
maximize the expected (predictive) power

  

where the integration can be approximated using summation 
over various δ1, δ2, and δ2 in practice.

Power comparison

Let Hi : 0iδ ≤ , i = 1, 2, 3. Using the rejection boundaries in Table 
7, we can obtain the power of the α-exhaustive method through 
simulations and compare it to the performance of Hommel’s method 
as a standard.

The power of the two methods is compared in Table 8. We can 
see that the α-exhaustive procedure provides more power in all cases 
except the case when δ1 = δ2 = 0 and δ = 0.3.

Again, as was observed in the case of two-hypothesis testing, 
when the parameters in the alternative hypotheses (e.g., effects of the 
different endpoints) are very different, for the α-exhaustive method 
we should use different α1, α2, and α3 such that their trend is consistent 
with the trend of parameters in the alternative hypotheses.

Table 6: Power Comparison for Two-Hypothesis Testing.

δ1/ δ2(σ=1)

Method 0.0/0.3 0.03/0.3 0.05/0.3 0.1/0.3 0.15/0.3 0.2/0.3 0.3/0.3

Hommel 0.732 0.736 0.741 0.759 0.792 0.836 0.933

 α-Ex1 0.712 0.736 0.752 0.796 0.843 0.890 0.962

 α-Ex2 0.745 0.764 0.777 0.812 0.852 0.893 0.962

 α-Ex3 0.735 0.755 0.770 0.808 0.850 0.892 0.962

 α-Ex4 0.723 0.746 0.761 0.803 0.846 0.891 0.962

 α-Ex5 0.700 0.725 0.742 0.790 0.839 0.887 0.962

0 1 2 3 1 2 3: :H H H H vs H H H Hα∩ ∩ ∪ ∪

2
1 1 2 2

1 2

2 2
2 2 3 3 1 2 3

2 3

2
3 3 1 1

3 1

ln ln

ln ln ,

ln ln

α αα α α α α α
α α

α αα α α α α α α α α α α
α α

α αα α α α α α
α α

    
+ + + − =    

   
    + + + − = ≤ ≤ ≤ <   

   
     + + + − =      

( )
2 2

31 1
4 1 1

4

3 1 ln 1 3 2 3 .α αα α α α α α
α α

  
 + + − − + − = 
   

( ) ( )1 2 3 1 2 3 1 2 3 1 2 3, , , , , , ,Power g d d dδ δ δ α α α δ δ δ δ δ δ∫

The reason that α-exhaustive method (with α1 = α2) has lower 
power than Hommel’s method at the extreme case when δ1 = 0 and 
δ2 = 0.3 is that the former emphasizes the consistency of the evidence 
against all the hypotheses. When δ1 = 0 and δ2 = 0.3, the results are 
inconsistent. If we believe δ1 is smaller than δ2, we should use different 
α1 and α2 (e.g., α2 = 1.6 α1 in α-Ex3). Even if we are wrong about the 
direction of δ1 versus δ2, the power of the α-exhaustive method will 
be still higher than Hommel’s method as seen in α-Ex5. For instance, 
we use α1 = 1.25 α2 as in α-Ex5, when in fact δ1/δ2= 0.05/0.3, the 
proposed method has higher power. If, however, we are completely 
wrong about the direction of δ1 versus δ2, e.g., when δ1/δ2 = 0/0.3, the 
proposed method will have lower power (70%) than the Hommel’s 
power (73%). In general, if we do not know which delta is larger, we 
should use equal α, i.e., α1 = α2.

Formulation for Three Hypotheses
We now discuss the progressive α-exhaustive procedure for 

three-hypothesis testing:

       (17)

Similar to two-hypothesis testing, the rejection-acceptance rules 
of the α-exhaustive procedure for three-hypothesis testing are

• If 1 2 3 4 1 2 1 1 3 1 1p p p p p p p pα α α α≤ ∩ ≤ ∩ ≤ ∩ ≤ , reject H1; 
otherwise accept H1.

• If 1 2 3 4 2 1 2 2 3 2 2p p p p p p p pα α α α≤ ∩ ≤ ∩ ≤ ∩ ≤ , 
reject H2, otherwise accept H2.

• If 1 2 3 4 3 1 3 3 2 3 3p p p p p p p pα α α α≤ ∩ ≤ ∩ ≤ ∩ ≤ , 
reject H3, otherwise accept H3.

Here 1 2 3α α α≤ ≤ .

Determination of critical values

The derivations of the critical values are placed in the Appendix. 
In this section we describe the key steps and summarized the results. 
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K-Hypothesis Testing Procedure
We will now discuss the progressive α-exhaustive procedure 

for K-hypothesis testing. To avoid the rejection boundary being too 
small, causing inconvenience, we use term 1

kk
ii

p
=∏  instead of 1

k
ii

p
=∏  in the 

decision rules for a general K-hypothesis testing. It is obvious that 
these two test statistics are equivalent in terms of power.

For K-hypothesis testing, the rejection rules for H1 can be 
specified as

               ,(20) 

reject H1; otherwise accept H1.

The rejection rules for H2, H3,…. HK can be constructed in similar 
way.

When K increases, the number of terms increases quickly, but 
any of the terms that is a product of more than 5 p-values will be 
automatically satisfied based simulations. The main problem is 
not the computational time, but the loss of efficacy for a large K. 
Therefore, the advantage of the α-exhaustive methods is not clear 
when K > 6. In a clinical trial, however, often the most important 
(clinically meaningful and commercial viable) hypotheses are usually 
limited between 1 and 6.

Summary and Discussion
To construct a multiple testing procedure, we need to consider 

at least three things to ensure sufficient power: (1) α-exhaustive, (2) 
synergize strengths among data for local hypothesis or marginal 
p-values, and (3) use correlations between local test statistics or 
local p-values. In principle, the proposed α-exhaustive procedure 
has considered all three aspects. To achieve α-exhaustion, we use 
the marginal p-value product corresponding to each null hypothesis 
configuration and enforce it with an upper bound in the rejection 
rules. Using such p-value product terms in the rejection rules also 
ensures the synergy between the marginal p-values. The K-hypothesis 
testing algorithm can be applied to the test statistics with correlations, 
however, due to its complexity and larger scale applications in clinical 
trials (dose-finding, subgroup analysis, adaptive design), the details of 
such an expansion will be considered in future research.

The proposed progressive a-exhaustive procedure is not 
only statistically powerful, but it also stresses the importance of 
clinical/practical meaningfulness since the method emphasizes the 
consistency among the evidences coming from different endpoints, 
different doses, and different populations. That is, it uses the totality 

of the evidence to make a conclusion. The test procedure is simple 
and performs well in broad situations. When the true "standardized" 
effect size, the true value of the parameter, is very different for 
different hypothesis, the choice of the set of critical values should be 
consistent with the trend of alternative ( )1,2,...,kH k K=  to boost the 
power as shown in Table 6.

Appendices
SAS code for progressive test procedure

 /* Progressive Alpha-exhaustive Test Procedure for Two-
Hypothesis */

 %Macro aExTest2H(nSims, u1, u2, sigma, N, alpha1, alpha2, 
alpha);

 * nSims = the number of simulation runs;

 * u1, u2 = parameters for H1 and H2. sigma = common standard 
deviation;

 * N = sample size;

 * alpha1, alpha2, alpha = critical values on p-scale;

 * Power = prob of rejecting H1 or H2,

 * PowerBoth = prob of rejecting H1 and H2.;

 Data aEx2H;

 keep u1 u2 N PowerBoth Power;

 N=&N; u1=&u1; u2=&u2; sigma=&sigma; alpha=&alpha;

 Power=0; PowerBoth=0;

 Do iSim=1 To &nSims;

 z1=Rand("normal", &u1, sigma/sqrt(N))/sigma*sqrt(N);

 p1=1-CDF("normal", z1);

 z2=Rand("normal", &u2, sigma/sqrt(N))/sigma*sqrt(N);

 p2=1-CDF("normal", z2);

 sig1=0; sig2=0;

 If p1*p2<=&alpha1 And p1<=alpha Then sig1=1;

 If p1*p2<=&alpha2 And p2<=alpha Then sig2=1;

 If sig1=1 OR sig2=1 Then Power=Power+1/&nSims;

 If sig1=1 And sig2=1 Then PowerBoth=PowerBoth+1/&nSims;

 End;

 Output;

 Run;

 %Mend;

 Title "Checking Type-I Error under H1 and H2";

 %aExTest2H(10000000, 0, 0.0, 1, 90, 0.004855, 0.004855, 0.025);

 Proc print data=aEx2H;

 Run;

Table 7: Stopping Boundary for One-Sided Test (α1 = α2 = α3).

α 0.010000 0.025000 0.050000 0.075000 0.100000

α1, α2, α3 0.001897 0.004855 0.010097 0.015739 0.021798

α4 0.001105 0.002677 0.005157 0.007566 0.009966

Table 8: Power Comparison between Hommel’s and α-exhaustive Procedures.

δ1/ δ2(δ3=0.3, σ=1)

Method 0.0/0.0 0.0/0.3 .03/0.3 0.1/0.3 0.2/0.3 0.1/0.2 0.1/0.1 0.3/0.3

Hommel 0.482 0.735 0.737 0.750 0.794 0.612 0.533 0.869

α-Ex 0.470 0.756 0.775 0.821 0.885 0.698 0.599 0.941

Note: α = 0.025, α1 = α2 = α3 = 0.004855, α4 = 0.002677, sample size =60.

( ) ( ) ( )1 2 1 2 1
1 1 2 12 1 3 13 1 2 12...... ... K

K Kp p p p p p p pα α α α≤ ∩ ≤ ∩ ≤ ∩ ∩ ≤
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 Title "Power under H1: u1=0.3 and H2: u2= 0.3";

 %aExTest2H(1000000, 0.3, 0.3, 1, 90, 0.004855, 0.004855, 0.025);

 Proc print data=aEx2H;

 Run;

 /* Progressive Alpha-exhaustive Test Procedure for Three-
Hypothesis */

 %Macro aExTest3H(nSims, u1, u2, u3, sigma, N, alpha1, alpha4, 
alpha);

 * nSims = the number of simulation runs;

 * N = sample size;

 * u1, u2, u3 = parmeters for H1, H2, and H3;

 * alpha1, alpha2, alpha = cretical values on p-scale;

 * Power = prob of rejecting H1 or H2 or H3;

 * PowerAll = prob of rejecting H1, H2 and H3 simultaneously;

 Data aEx3H;

 keep u1 u2 u3 sigma N alpha PowerAll Power;

 u1=&u1; u2=&u2; u3=&u3; sigma=&sigma; N=&N;

 alpha=&alpha; alpha1=&alpha1; alpha4=&alpha4;

 Power=0; PowerAll=0;

 Do iSim=1 To &nSims;

 z1=Rand("Normal", u1, sigma/sqrt(N))/sigma*sqrt(N);

 p1=1-CDF("Normal", z1);

 z2=Rand("Normal", u2, sigma/sqrt(N))/sigma*sqrt(N);

 p2=1-CDF("Normal", z2);

 z3=Rand("Normal", u3, sigma/sqrt(N))/sigma*sqrt(N);

 p3=1-CDF("Normal", z3);

 sig1=0; sig2=0; sig3=0;

 p4=p1*p2*p3;

 If p4<=alpha4 & p1*p2<=alpha1 & p1*p3<=alpha1 & p1<=alpha 
Then sig1=1;

 If p4<=alpha4 & p2*p1<=alpha1 & p2*p3<=alpha1 & p2<=alpha 
Then sig2=1;

 If p4<=alpha4 & p3*p1<=alpha1 & p3*p2<=alpha1 & p3<=alpha 
Then sig3=1;

 If sig1=1 OR sig2=1 Or sig3=1 Then Power=Power+1/&nSims;

 If sig1=1 And sig2=1 And sig3=1 Then 
PowerAll=PowerAll+1/&nSims;

 End;

 Output;

 Run;

 %Mend;

 Title "Checking Type-I Error under H1 , H2, and H3";

 %aExTest3H(10000000, 0, 0, 0, 1, 60, 0.004855, 0.002677, 0.025);

 proc print data=aEx3H;

 Run;

 Title "Power when u1=0, u2=0.3, and u3= 0.3";

 %aExTest3H(1000000, 0, 0.3, 0.3, 1, 60, 0.004855, 0.002677, 
0.025);

 Proc print data=aEx3H;

 Run;
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