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Introduction
Confirmatory Factor Analysis (CFA) plays an integral role in establishing evidence for the 

validity of test scores. For example, CFA is used in test development is to verify that a factor structure 
based on empirical data aligns with theory. Consider the case where the goal of test development 
is to develop normative scores based on a factor analytic structure posited by theory. Provided the 
model fit is acceptable, scale scores developed based on a normative sample are subsequently used 
to make important decisions for diagnostic classification or ranking persons based on ability or 
achievement. However, CFA is highly restrictive due to the requirement of zero loadings on non-
hypothesized factors for a particular model under investigation. The restrictive nature of CFA often 
leads to competing questions about alternative model structures that may yield better model-data fit 
and increased precision in parameter estimates. However, it is important to ensure that no statistical 
anomalies are present in the measurement and latent variable parts of the model in any factor 
analysis model. In empirical research, although perfect model fit in factor analysis is a target goal, 
the need for rigorous evaluation beyond a single analysis is critical. To this end, the need for close 
inspection and follow-up analyses of perfect model fit is clearly highlighted in this investigation. 

The impetus for this investigation arose from the observation of perfect model fit in the 
hierarchical CFA conducted on the Wechsler Preschool and Primary Test of Intelligence-Fourth 
Edition(WPPSI-IV; Wechsler, 2012) [2] during the test development phase. In the original 
hierarchical CFA conducted on the WPPSI-IV, although perfect fit was obtained, a non-positive 
definite covariance matrix was observed in the latent variable (factor) matrix yielding the solution 
in admissible. As illustrated in this didactic, the restrictive nature of the hierarchical CFA generated 
inflated latent variable (factor) parameter estimates in the WPPSI-IV factor structure, which in 
turn, generated a non positive-definite latent variable (factor) matrix. Additionally, in the original 
hierarchical CFA, no supplemental analyses were conducted. For example, related questions include 
(a) How might the hierarchal CFA parameter estimates (and their standard errors) have differed 
based on a larger or smaller sample size as compared to the original normative sample? (b) Would 
the appearance of the non-positive definite latent variable matrix have appeared with different size 
conditions? (c) Would inflated latent variable correlations appeared at larger and smaller sample sizes 
other than the sample used in the original hierarchical CFA? This didactic investigation provides a 
systematic way to address these questions. Ultimately, the goal here is to provide guidance on how 
to identify the best hierarchical factor structure in a way that is supported by rigorous psychometric 
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Abstract

Confirmatory Factor Analysis (CFA) plays an integral role in establishing evidence for the validity of test 
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the second-order factor model for simple structure, and (c) illustrating the tenability of Bayesian Structural 
Equation Modeling (BSEM) in resolving a non-positive definite matrix solution and in capturing the relationships 
between the measurement and latent variable parts of the second-order model in a way that provides an optimal 
tradeoff between simple structure and perfect model-data fit. The ESEM hierarchical approach identified loadings 
contradicting the original factor analytic results. Bayesian second-order CFA revealed that latent regressions 
were inflated in the original second-order CFA resulting in an in admissible solution due to a non-positive definite 
latent variable matrix. Respecification of the factor model using BSEM informed by the ESEM analysis eliminated 
the inadmissible solution and provided unbiased parameter estimates across sample sizes of N=100, 300, 600 
and 1000.
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and statistical procedures rather than rely on a single sample-based 
hierarchical factor analysis. 

The goal of CFA is to obtain estimates for each parameter of the 
measurement model that produces predicted variance-covariance 
matrix (Σˆ) that resembles the sample variance-covariance matrix (S) 
as closely as possible [3].The discrepancy between the two matrices is 
expressed as a fitting function F(S,Σˆ). In the just-identified case the 
factor model holds exactly in the population (i.e., S=Σˆ) and a perfect 
model-data fit is exhibited by (a) a χ2 of zero (0 df); p=1.0. In the over-
identified case, F(S,Σˆ)=0 and the criteria for a perfect model-data 
fit includes: (a) χ2 goodness-of-fitindex is not statistically significant 
with a range between p=.50-1.0 (Jöreskog & Sörbom,1996a) [4], 
(b)a value=1.0 for a goodness-of-fit index such as the comparative 
fit index (CFI), (c) the root mean square error of approximation 
(RMSEA)=0.0 and (d)a residual matrix of the discrepancy between 
S and Σˆcontaining 0.0 for all parameter estimates. In CFA, perfect 
model-data fit is rarely obtained and as Bollen (1989) [5] notes, 
even when a perfect model-data fit is obtained, there are other 
plausible models where perfect fit is possible. As previously noted, 
CFA is restrictive requiring that subtests load exclusively on specific 
theoretical factors. Under this assumption, CFA is consistent with 
the restrictive independent cluster model and it has the advantage of 
motivating researchers to develop parsimonious models. Although 
the idea of having pure items or sub tests that load on a single factor is a 
central tenet of CFA, this is not are quirement of a well-defined, useful 
factor structure, nor even a requirement of traditional definitions of 
simple structure (Brown, 2006; McDonald, 1999; Thurstone, 1947) 
[6-8]. The concept of simple structure was introduced by Thurstone 
(1947) [8] where he argued that a well-defined, useful factor structure 
should meet certain criteria. The principles of simple structure are 
more comprehensive than the exclusive requirement that only 
specific items or subtests load on specific factors (with no cross-
loadings). The principles of simple structure include (a) each row of 
the factor matrix having at least one loading close to zero, (b) for each 
column of the factor matrix there should be as many variables with 
zero loadings or near-zero loadings as there are factors, (c) for every 
pair of factors there should be several variables with loadings on one 
factor but not in the other, (d) when there are four or more factors, 
a large portion of the variable should have negligible (close to zero) 
loadings on any pair of factors, and (e) for every pair of factors in the 
factor matrix there should be only a small number of variables with 
non-zero loadings (Kerlinger and Lee, 2000) [9].

The aim of this didactic investigation is to present a systematic 
approach to ensure the criteria for simple structure are met while 
simultaneously evaluating the psychometric integrity of the factor 
solution in the presence of perfect model fit. Specially, the evaluation 
of psychometric integrity in this investigation includes examining 
the existence of bias in factor loadings over variations in sample size, 
presence or absence of singularity in the variance-covariance latent 
variable matrix and adherence to the guidelines for simple structure. 
To facilitate presentation, a three-step procedure is provided using the 
standardization sample from the young sample (ages 2years, 6months 
to 3years, 11 months, N=600) Wechsler Preschool and Primary Test 
of Intelligence-Fourth Edition (WPPSI-IV; Wechsler, 2012) [2]. The 
original CFA conducted on the WPPSI-IV produced a perfect model 
fit; however, singularity existed in the solution (i.e. a non-positive 
definite covariance matrix was observed in the factor solution).

Study Goals
A search of published research examining methodological 

strategies to evaluate the condition of perfect model-data fit in second-
order CFA yielded zero citations. To address this gap in the literature, 
the goal of this study is to present a didactic on how to proceed in 
the systematic investigation of perfect model data fit. Specifically, 
detailed steps are provided related to how researchers can proceed 
with the goal of identifying the best factor structure supported by 
rigorous psychometric and statistical procedures. The presentation 
is based on empirical data used in the original hierarchical CFA 
conducted during the standardization phase of the WPPSI-IV. A 
factor analytic study such as the original CFA is routinely conducted 
by the test publisher prior to the development and publication of 
normative scores. Step one of the procedure involved evaluating the 
impact of sample size on parameter estimation bias and singularity 
in the factor solution (i.e. observance of a non-positive covariance 
matrix among the structural part of the model). Step two includes 
using (Muthén and Asparouhov’s (2012) [1]. ESEM approach to aid 
in evaluating the second-order factor model for simple structure 
and diagnosing problems leading to observance of a non-positive 
definite latent variable matrix (i.e. singularity). Step three uses the 
information gleaned from the ESEM analysis to inform a Bayesian 
Structural Equation Modeling (BSEM) in resolving the non-positive 
definite matrix solution and capturing the relationships between the 
measurement and latent variable parts of the second-order model in 
a way that provides an optimal tradeoff between simple structure and 
perfect model-data fit. The methodological approach provided here 
offers a didactic, systematic strategy for investigating the occurrence 
of perfect model-data fit in second-order factor analytic studies. 
Ideally, the strategy provided will serve as a guide for theoretical and 
applied researchers in improving the sensitivity and precision of CFA.

In this didactic example, perfect model fit was evaluated relative 
to the theoretical framework of the Wechsler Preschool and Primary 
Test of Intelligence-Fourth Edition (WPPSI-IV; Wechsler, 2012) 
[2]. The second-order (hierarchical) factor structure and subtest 
composition of the WPPSI-IV illustrated in Figure 1 reflects current 
theory and practice of intelligence assessment in children (Alfonso, et 
al., 2005) [10]. The WPPSI-IV is an innovative measure of cognitive 
ability for preschool age and young children that is grounded in 
contemporary theory and research. The six subtests included on 
the WPPSI-IV specific to the young sample are (a) Information, 
(b) Receptive Vocabulary, (c) Block design, (d) Object Assembly, 
(e) Picture Memory, and (f) Zoo Locations. The Information and 
Receptive Vocabulary subtests comprise the first-order Verbal 
Comprehension factor; Block Design and Object Assembly comprise 
the first-order Visual Spatial factor, and Picture Memory and Zoo 
Locations comprise the first-order Working Memory factor (see 
Figure 1). The Information subtest measures a child’s ability to 
acquire, retain and retrieve general factual knowledge. It involves 
crystallized intelligence, long-term memory, and the ability to retain 
and retrieve knowledge from the school environment. The Receptive 
Vocabulary subtest measures a child’s ability to comprehend verbal 
directions, auditory and visual discrimination, auditory memory, 
auditory processing and the integration of visual perception and 
auditory input. The Block Design subtest is designed to measure 
the ability to analyze and synthesize abstract visual stimuli. The test 
also includes nonverbal concept formation visual perception and 
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organization, simultaneous processing, visual-motor coordination, 
earning and the ability to discern figure in visual stimuli. The Object 
Assembly subtest is designed to assess visual-perceptual organization, 
integration and synthesis of part-whole relationships, nonverbal 
reasoning, cognitive flexibility, and visual-motor-coordination. The 
Picture Memory subtest assesses working memory in the form visual 
perception and organization, concentration, and visual recognition 
and memory of important details. The Zoo Locations subtest assesses 
visual-spatial working memory-based skills (Figure1).

Sample
A subsample of the standardization (normative) sample for the 

Wechsler Preschool and Primary Test of Intelligence-Fourth Edition 
(WPPSI-IV; Wechsler, 2012) [2] ages 2 years, 6 months to 3 years, 
11 months (young sample, N=600) served as the sample for this 
investigation. Four out of six sub tests displayed mild or moderate 
skewness; multivariate kurtosis was acceptable. Table 1 provides 
descriptive statistics and subtest score reliability estimates for the 
sample.

The second-order confirmatory factor analysis (a.k.a. HCFA) is 
provided in figure1. The second-order CFA model is expressed in 
notation LISREL (Jöreskog & Sörbom, 1996a) [4] in Equation1. Table 
2 provides the maximum likelihood parameter estimates for the 
original second-order CFA. The second-order CFA is over-identified 
and yielded a perfect model-data fit (i.e.F(S, Σ̂ ) = 0, χ2=2.0(6), p=.91; 
CFI =1.0; RMSEA=0.0; SRMR=0.0).

Equation1.Second-Order Factor Analysis Model

= Λ Γξ + ς + εyy ( )
Λy = matrix of first-order factor loadings (p x m).

Γ = matrix of second-order factor loadings (m x n).
ξ = vector of second-order factors (n x 1).
ς =vector of second-order unique components.
ε = vector of first-order unique components.

Φ =covariance matrix of second-order factors (n x n).

ψ =covariance matrix of second-order uniqueness(m x m).

εΦ =diagonal covariance matrix of first-order uniqueness (p x p).

Methods
Number of Factors per Items/Sub tests and Sample Size

The SEM literature on the use of maximum likelihood estimation 
on model parameters, regarding the percentage of proper solutions, 
accuracy of parameter estimates and the appropriateness of the 
overall chi-square reveals that large sample sizes (N) are required for 
unbiased parameter estimates. For example, Anderson and Gerbing 
(1988) [11] recommend an N of  between 100 to 150 subjects, 
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Figure 1: WPPSI-IV Hierarchal Confirmatory Factor Analysis Model.

Table 1: Descriptive statistics for WPPSI-IV subtests.

Subtest M SD Skewness 
(Z-score)

Kurtosis 
(Z-score) Reliability

Information 9.90 3.0 -2.58* 1.54 .91

Receptive Vocabulary 9.90 3.0 -0.06 0.32 .91

Block Design 9.91 3.0 -4.03* 5.37 .85

Object Assembly 9.70 3.1 2.19* 1.26 .85

Picture Memory 9.90 3.2 -4.45* 2.10 .91

Zoo Locations 9.93 3.0 -1.19 1.87 .90

Multivariate 3.29

Note: Subtests scores are based on total scores for item responses then 
normalized into scale scores.
*skewness significant at p < .05

Table 2: WPPSI-IV second-order (hierarchical) Confirmatory Factor Analysis.

Factor by 
Subtest Loading S.E. Confidence

Interval

Verbal Comprehension Lower95% Upper95%
Information 0.76 0.03 0.71 0.82

           Receptive
Vocabulary 0.75 0.03 0.69 0.79

         Visual Spatial
Block Design 0.66 0.04 0.59 0.73

ObjectAssembly 0.61 0.04 0.53 0.68

       Working Memory
PictureMemory 0.73 0.05 0.64 0.82
Zoo Locations 0.5 0.04 0.42 0.58

Note: N=600. Loadings are standardized. Confidence intervals based on 1000 
bootstrap replications.

Composite
Full 

Scale 
Factor

Confidence Interval

Lower 
95%

Upper 
95%

Verbal 
Comprehension

0.92(.05)
((.0(.03) 0.85 0.909

Visual 
Spatial - 0.92 (.05) 0.84 1

Working 
Memory - - 0.90 (.05) 0.83 1

Note: N=600. Loadings are standardized. Confidence intervals based on 1000 
bootstrap replications. Standard errors are in parentheses in lower composite 
table.
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Boomsma (1983) [12] recommends N=400. Bentler and Chou (1987) 
[13] recommend a ratio also was five subjects per variable as being 
sufficient in normal and elliptical distributions when the latent 
variables have multiple indicators. MacCallum, Browne and Sugawara 
(1996) [14] provide support for large N noting that the power and 
precision of parameter estimates increase monotonically with sample 
size andthedegreesoffreedom. However, they also noted that adequate 
power can be achieved with relatively modest levels of N when degrees 
of freedom are small. Ding, Velicer and Harlow (1995) [15] reported 
that the likelihood of fully proper solutions increased with increasing 
the number of indicators per factor, sample size and magnitude of 
factor loadings. Regarding the optimal number of indicators (p) 
per factor(f; i.e.#p/f), research suggests thatat least three indicators 
per factor are desirable, but under certain circumstance two may 
be sufficient (Brown, 2006, p.72; Bollen, 1989) [5,5]. Circumstances 
where two indicators per factor are acceptable include (a) when every 
latent variable is correlated with at least one other latent variable and 
(b) the errors between indicators are uncorrelated. The WPPSI-IV 
second-order factor structure includes two subtests per factor with 
factors being correlated with one another and the assumption that 
errors of measurement are uncorrelated. In step one of this didactic, 
we investigate the role of sample size in (a) model-data fit, (b) power, 
(c) Type II error and (d) observing a non-positive covariance matrix. 

Sample Size

A statistically significant χ2of model-fit indicates a discrepancy 
between the sample variance-covariance matrix (S) and the predicted 
variance-covariance matrix (Σˆ.) However, the χ2 is problematic due 
to its sensitivity to sample size, yielding solutions that are rejected 
when using large sample size seven when differences between Σˆ  and 
S are negligible (Yuan, 2010) [16]. Additionally, the role of sample 
size was of interest in relation to observing the presence of a non-
positive definite latent variable covariance matrix. In step one of our 
approach, Markov chain Monte Carlo (MCMC, Brooks et.al, 2011) 
[17] simulation was used to examine the sampling distribution of the 
parameter estimates and error structure of the WPPSI-IV second-
order factor model across sample sizes of N=100, 300, 600 and 
1,000. In the simulation study, parameter estimates for the N=600 
(standardization sample for the WPPSI-IV) served as the starting 
values for all simulation conditions. Additionally, a power analysis at 
each sample size condition was conducted. Mplusversion7.3 (Muthén 
& Muthén, 2012) [18] was used to conduct the simulation study. 
Percent bias was defined as the population parameter value minus the 
average parameter value divided population parameter value times 
one-hundred (100). Ninety-five percent (95%) coverage was defined 
as the proportion of replications for which the 95% confidence interval 
contained the true population parameter value. Details describing the 
steps in conducting a simulation study such as the one in this study 
are provided in Muthén & Muthén, 2002; Price, 2012) [19,20].

Results from the simulation study are reported in Table3and 
reveal that perfect model fit for the over-identified second-order 
model resolved (i.e. was no longer observed) at sample sizes of 100, 
300 and 600. Particularly problematic was the observation that at a 
sample size of N=100,59% of the solutions were inadmissible due to 
a non-positive definite latent variable matrix. Across all sample sizes, 
bias in factor loadings remained below 5% (Table 3). However, at 
sample size N=300, 35% of the solutions were in admissible due to 
a non-positive definite latent variable matrix. At sample size N=600, 

7% of the solutions were in admissible due to a non-positive definite 
latent variable matrix. In summary, the results of the simulation 
study revealed that while parameter estimates (factor loadings) were 
unbiased across all sample sizes, singularity in the second-order 
latent variable matrix remained problematic. In summary, sample 
size played an important role in diagnosing perfect model fit however 
it did not provide a diagnostic solution specific to singularity in the 
latent variable covariance matrix (Table 3).

Exploratory Structural Equation Modeling and Factor 
Analysis

One goal in this investigation was to illustrate the use of ESEM 
as a viable confirmatory alternative to CFA on the basis of strong 
theoretical assumptions regarding the expected factor structure. 
Therefore, in step two of this didactic, Asparouhov and Muthén’s 
(2009) [21] exploratory structural equation modeling (ESEM) 
framework was employed to address perfect fit and resulting 
improper solutions manifested as singularity in the second-order 
latent variable covariance matrix. The ESEM strategy provides 
a bridge between traditional EFA and CFA in that it (a) provide a 
statistical test of loadings in the measurement model and (b) allows 
for identification of potentially important cross-loadings and (c) 
captures measurement error in the respective sub tests. In traditional 
EFAthe decision to retain or exclude items or subtests involves some 
degree of subjectivity (Fabrigar & Wegener, 2012; Mulaik, 1972) 
[22,23]. In comparison to CFA, ESEM provides a way to apply EFA in 
a rigorous manner yielding a more accurate picture of the underlying 
factor structure relative to the constructs posited by theory. For 
example, allowing small cross-loadings to be included in a model 
provides a mechanism to identify items that are imperfect indicators 
of a construct. This step is beneficial because some degree of irrelevant 
association with the other constructs is able to be included in the 
model. Such irrelevant association in a model is identified as a form of 
systematic measurement error. Critical to the present investigation, is 
that when cross-loadings, even small ones, are not estimated, the only 
way to represent relationships between specific indicators and other 
constructs is through the latent factor correlations (Asparouhov 
& Muthén, 2009) [21]. Under these circumstances, latent factor 
correlations end up being overestimated in many applications 
of CFA - an artifact observed in the present study. In addition to 
inflated latent factor correlations, in hierarchical factor analysis, 
the issue of singularity (a.k.a. a non positive-definite latent variable 
variance-covariance matrix) is possible to exist. In the present study, 
singularity in the hierarchical latent variable variance-covariance 
matrix was particularly problematic because of the high correlation 
among Verbal Comprehension, Visual Spatial, and Working 
Memory factors at level-1 of the hierarchy. Importantly, ESEM offers 
the same advantages as CFA analysis in terms of fit indexes, standard 
errors, and tests of significance. Additionally, the ESEM framework 
is highly flexible and allows one to model correlated residuals and 
conduct tests of measurement invariance. In this way, ESEM provides 
a unified approach between CFA, EFA and SEM.

The main difference between CFA and ESEM/EFA is that all 
cross-loadings are estimated in EFA/ESEM and not in CFA. Model 
fitting with ESEM proceeded by allowing all six subtests (Figure 2) 
to load on each of the three factors (a) Verbal Comprehension, (b) 
Visual Spatial, and (c)Working Memory. Importantly, if there are at 
least moderate cross-loadings (e.g.,≥.30) in the true population and 
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Table 3: Monte Carlo Results for Hierarchical Confirmatory Factor Analysis of WPPSI-IV.

 N = 100 N = 300

Factor by Subtest Population Average % Bias 95% 
Coverage Power Population Average % Bias 95% 

Coverage Power

Verbal Compression  

Information 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Receptive Vocabulary 0.97 0.99 2.06 0.93* 1.00 0.98 0.98 0.00 0.95 1.00

 

Visual Spatial  

Block Design 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Object Assembly 0.94 0.96 2.12 0.94* 0.99 0.94 0.95 1.06 0.96 1.00

 

Working Memory  

Picture Memory 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Zoo Locations 0.66 0.67 1.51 0.96 0.97 0.66 0.66 0.00 0.95 1.00

 

Full Scale  

Verbal Compression 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Visual Spatial 0.85 0.87 2.35 0.95 1.00 0.85 0.86 1.17 0.94* 1.00

Working Memory 0.97 0.99 2.06 0.96 1.00 0.97 0.98 1.03 0.96 1.00
Note. Unstandardized estimates. MCMC iterations = 1000; Chi-Square = 6.08/SD = 3.5; RMSEA = 0.03/SD = .04; SRMR = .03/SD =.009. *Coverage < 95%. 59% 
solutions inadmissible due to non-positive-definite latent variable (factor) matrix. This may occur because of (a) a correlation greater or equal to 1 between 2 latent 
variables, (b) or a linear dependency among more than 2 latent variables, or (c) a negative variance for a latent variable. % bias = population parameter value - the 
average parameter value/population parameter value * 100. 95% coverage = the proportion of replications for which the 95% confidence interval contains the true 
population parameter value.

 N = 600 N = 1000

Factor by Subtest Population Average % Bias 95% 
Coverage Power Population Average % Bias 95% 

Coverage Power

Verbal Comprehension  

Information 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Receptive Vocabulary 0.97 0.98 1.03 0.95 1.00 0.97 0.97 0.00 0.95 1.00

 

Visual Spatial  

Block Design 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Object Assembly 0.93 0.94 1.08 0.95 1.00 0.94 0.94 0.00 0.96 1.00

 

Working Memory  

Picture Memory 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Zoo Locations 0.65 0.66 1.53 0.94* 1.00 0.66 0.66 0.00 0.95 1.00

 

Full Scale  

Verbal Comprehension 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

Visual Spatial 0.84 0.85 1.20 0.95 1.00 0.85 0.86 1.17 0.94* 1.00

Working Memory 0.97 0.97 0.00 0.96 1.00 0.97 0.98 1.03 0.96 1.00
Note. Unstandardized estimates. MCMC iterations = 1000; Chi-Square = 6.2/SD = 3.5; RMSEA = 0.01/SD = .01; SRMR = .01/SD =.003. *Coverage < 95%. 7% 
solutions inadmissible due to non-positive-definite latent variable (factor) matrix. This may occur because of (a) a correlation greater or equal to 1 between 2 latent 
variables, (b) or a linear dependency among more than 2 latent variables, or (c) a negative variance for a latent variable. % bias = population parameter value - the 
average parameter value/population parameter value * 100. 95% coverage = the proportion of replications for which the 95% confidence interval contains the true 
population parameter value.
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an adequate loading, but was not statistically significant. Latent factor 
variances for VC, VS, WM were set to 1.0 in the ESEM to overcome 
zero degrees of freedom and non-positive definite covariance matrix 
problems in the second-order latent variable matrix. Although the 
ESEM analysis provided greater diagnostic utility by revealing 
problematic portions of the WPPSI-IV factor structure, the final 
solution provided was not optimal and did not meet our target 
criteria for simple structure. In an attempt to further improve on 
model refinement, the second-order factor model was investigated 
using Bayesian SEM in step three of the procedure.

Bayesian structural equation modeling

In step three, Bayesian SEM was employed to further examine 
the identified problems in the second-order or hierarchical factor 
model. The goal is step three was to leverage Bayesian SEM to specify 
a model that (a) resolved the singularity problems in the latent factor 
covariance matrix and (b) met the criteria for simple structure and 
(c) exhibited unbiased parameter estimates across samples sizes of 
100, 300, 600 and 1,000. Bayesian statistical thinking can be viewed 
as an extension of the traditional (i.e., frequentist) approach, in that it 
formalizes aspects of the statistical analysis that are left to uninformed 
judgment by researchers in classical statistical analyses (Hoff, 
2009; Lee, 2007) [25]. A difference between Bayesian and Classical 
probability is that in the Bayesian framework, the data are fixed and 
the parameters are random. Conversely, in classical probability, the 
data are random and the estimated parameters are fixed. Because the 
parameters estimated in a Bayesian analysis are random, researchers 
are able to make direct probabilistic statements about (a) point 
estimates such as the mean, median, mode, or regression weights 
and (b) random parameters lying within specific upper and lower 
limits (i.e. credibility intervals). Also, Bayesian credible intervals 
often contain frequent is to coverage probabilities, often being close 
to Bayesian coverage levels (Hoff, 2009). A particular strength of the 
Bayesian approach to factor analysis is that one can refine the model 
at critical parts (i.e. through use of assigning priors to parameters) 
in order to gain a clearer picture of the underlying structure and use 
MCMC re sampling to examine the performance of the model. 
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Figure 2: Hierarchical Exploratory SEM Analysis (HESEM).
Note: Heavy bold paths=anchor test; Dotted paths are set to zero because 
they serve as anchors in the simultaneous solution of other composities; 
Dashed paths are required for the exploratory solution. VC= verbal 
compherension, VS= visual spatial, WM=working memory.

Table 4: Exploratory Second-Order SEM of WPPSI-IV young sample.

Subtest Factor p-value Factor p-value Factor p-value Reliability

1  2  3   

Block Design 0.00 (.00) - 0.68 (.09) 0.00 -0.03 (.08) 0.69 .85

Object Assembly 0.03 (.28) 0.92 0.67 (.62) 0.28 -0.10 (.43) 0.80 .85

Information 0.83 (.12) 0.00 0.00 (.00) - 0.00 (.00) - .91

Receptive Vocabulary 0.49 (.35) 0.16 0.26 (.34) 0.47 0.00 (.00) - .91

Picture Memory 0.19 (.18) 0.29 -0.15 (.18) 0.40 0.70 (.06) 0.00 .91

Zoo Locations 0.00 (.00) - 0.00 (.00) - 0.52 (.04) 0.00 .90

Composite Full Scale Factor p-value  

Verbal Comprehension 0.80 0.000 .94

Visual Spatial - - 0.97 0.000 .90

Working Memory - - - - 0.90 0.000 .92
Note. Estimates are standardized; Sample size is N=600; Ages 2:6 to 3:11. Values in parentheses are standard errors. Reliability estimates are based on split-half 
technique with Spearman-Brown correction. "-" results from a zero factor loading. Verbal latent variable r-square = .63; Visual Spatial latent variable r-square = .94; 
Working Memory latent variable r-square is undefined because of a .82 loading. Latent factor variances VC, VS, WM set to 1.0; this step taken to overcome zero 
degrees of freedom and non-positive definite covariance matrix problems in the PSI or latent variable matrix.

these loadings are constrained to be zero, then estimated regression 
weights in the second-order portion of the model are likely to be 
inflated (Asparouhov & Muthén, 2009; Marsh, 2010) [21,24]. The 
occurrence of inflated factor regressions with factor models having 
moderate cross-loadings holds true for orthogonal and oblique factor 
models alike. In table 4, the results of the exploratory/confirmatory 
approach using ESEM approach are provided for the WPPSI-IV.

The results of the ESEM revealed additional loadings on non-
hypothesized factors in comparison to the original CFA model. 
Although the observed non-hypothesized loadings were not 
statistically significant, they verified that (a) the assumptions of the 
CFA model were untenable for the N = 600 standardization sample 
and (b) violations of the tenets of simple structure were revealed. 
Additionally, statistical significance was not observed on all subtests 
hypothesized to load on their respective factors. For example, for 
factor one (Verbal Comprehension), the Receptive Vocabulary subtest 
displayed an adequate loading, but was not statistically significant. 
For factor two (Visual Spatial), the Object Assembly subtest displayed 
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Assigning Priors to Model Parameters: Bayesian statistical inference 
provides a frame work for incorporating information from on level 
via priors to inform the analysis at other levels (Congdon, 2010). 
[26]. Assigning priors increases precision of the parameter estimates 
and is advantageous in complex models. Here, informative priors 
(~Normal 0.0, .04) were used on factor cross-loadings reflecting a 
high probability with in a plausible range for the parameter values. 
Primary factor loadings were set at (~N 0,1); informative inverse 
gamma priors (~IG0.0, .001) were placed on the intercept and 
variances of the latent variables (factors).

Bayesian Model Fit and Results: All analyses were performed using 
M plus, version 7.3. The posterior distributions for all parameters 
were derived through the Gibbs sampling method. In this method, 
the conditional distribution of one set of parameters given other sets 
can be used to maker and omdraws of parameter values, resulting 
in the approximation of the joint distribution of all parameters 
(Muthén and Asparouhov, 2012) [1]. In the N=600sample, the PPP 
was observed as .65 indicating an excellent model-data fit. The Gel 
man-Rubin convergence diagnostic takes into account the Potential 
Scale Reduction statistic (PSR; Gelman, Carlin, Sternand Rubin, 
2004) [27] and monitors the between chain variation to the within-
chain variation. Proper convergence of the MCMC chains over the 
50,000 draws was achieved (i.e. observed as 1.02), ideal values are 
between1 and 1.1. Thus convergence was verified by PSR value of 
<1.1. Results of the Bayesian second-order factor model demonstrate 
(a) that the WPPSI-IV is properly specified and (b) improvements 
in accuracy and precision of the parameter estimates were achieved 
while simultaneously accounting for challenges in the second-order 
latent variable (i.e. factor) matrix. Table 5 provides the results of the 
Bayesian Second-Order CFA.

The results of the Bayesian second-order factor analysis provided 
a solution to the issues observed in the original second-order CFA 
and those appearing in the ESEM approach. For example, the second-
order factor structure of the WPPSI-IV displayed (a) significant 
loadings on the hypothesized factors, (b) small, non-significant 
loadings on non-hypothesized factors (<.06; Table 5), consistency 

among the second-order factors (e.g., loadings of .89 or .90) relative 
to their loadings on the subtests, and (d) elimination of the non-
positive definite latent variable issue (see footnote in Table 5). 

Conclusion and Discussion
The findings from this study provide important did actic 

information for researchers under circumstances where perfect 
model-data fit is observed in second-order or hierarchical CFA. The 
results of the simulation study revealed that the parameter estimates 
reported in the original second-order CFA were unbiased with power 
being adequate at sample sizes as small as N=100 (although for some 
loadings 95% coverage was not observed). However, inadmissible 
solutions due to a non-positive definite latent variable matrix were 
observed >10% of the time until the sample size reached N>600. Based 
on the results here and the accessibility of conducting simulation 
protocols, researchers in applied psychometrics are encouraged to 
conduct simulation studies as a regular part of their factor analytic 
work to provide more rigorous evaluation of the role of sample size, 
power and parameter bias. 

The ESEM approach confirmed the initial problems observed in 
the WPPSI-IV second-order CFA. For example, small to moderate 
cross-loadings were identified violating the tenets of simple 
structure and non-significant loadings were observed on some of 
the hypothesized subtest-factor relationships. Also, the non-positive 
definite latent variable matrix remained problematic in the ESEM 
analysis. Taken together, these results provide evidence that while the 
ESEM is more sensitive than traditional CFA at revealing the second-
order factor structure, it did not provide information enough useful 
for resolving the problem of a non-positive latent variable matrix and 
achieving simple structure. 

In the final step of this didactic, analytic results of the Bayesian 
SEM analysis revealed that latent (factor) regressions were inflated 
in the original second-order CFA. This result is highly important 
since, from a theoretical perspective, it is important that the size of 
the relationships between the hierarchical factors in the model are 
accurately captured. The ability to include prior information into 

Table 5: Bayesian Second-Order SEM of WPPSI-IV Young Standardization Sample N=600. (Bayes estimation with small variance priors on cross-loadings of .04).

Subtest Factor p-value Factor p-value Factor p-value

1 2 3

Block Design 0.03 0.40 0.61 0.00 0.04 0.37

Object Assembly 0.05 0.32 0.55 0.00 0.02 0.43

Information 0.71 0.00 0.02 0.43 0.05 0.33

Receptive Vocabulary 0.71 0.00 0.04 0.34 0.01 0.45

Picture Memory 0.05 0.33 0.01 0.47 0.67 0.00

Zoo Locations -0.01 0.45 0.04 0.35 0.49 0.00

Composite Full Scale Factor p-value

Verbal Comprehension 0.89 0.000

Visual Spatial - - 0.89 0.000

Working Memory - - - - 0.90 0.000
Note. MCMC based on 200,000 iterations with 2 chains using Gibbs sampling. PPP=.64; PSR <1.05 Verbal latent variable r-square = .79; Visual Spatial latent 
variable r-square = .79; Working Memory latent variable r-square = .81. *No non-positive-definite matrix problems even though the latent variable variance were not 
set to 1.0*
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the hierarchical factor model also proved beneficial to improving the 
accuracy of the factor structure. For example, assigning informative 
priors provided away to capture the impact of the cross loadings with 
while maintaining the theoretical tenets of the WPPSI-IV structure. 
In this way, the guidelines of simple structure were met. The Bayesian 
approach also provided an efficient way to model the distributional 
characteristics of the subtest scores. For example, instead of 
transforming subtest scores or using elliptical estimators to adjust 
for skewness, subtest score distributions were modeled according to 
their true distributional characteristics. Perhaps most importantly, 
inadmissible solutions due to an on-positive latent variable matrix 
were eliminated. Overall, the didactic presented here provides a 
systematic approach to critically examine the structure of a second-
order CFA model. Ideally, application of this strategy will contribute 
to improving the validity of scores based on a second-order CFA in 
test development.
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