
SM Journal of 
Biometrics & 
Biostatistics

Gr   upSM

How to cite this article Casa A. On the Choice of the Weight Function for the Integrated Likelihood. 
SM J Biometrics Biostat. 2018; 3(3): 1033.

OPEN ACCESS

ISSN: 2573-5470

Introduction
Statistical inference procedures aim to gain knowledge about a phenomenon of interest. 

In a parametric context, where 
		

is the considered model, this corresponds to 
have indications about plausible values for the parameter θ . In real applications, as for instance 
those in biomedical field, θ is often partitioned as ( ),θ = ψ λ

 
where ψ ∈ Ψ  and λ ∈Λ  are respectively 

the parameter of interest and the nuisance parameter, both possibly multidimensional. Nuisance 
parameters are not of primarily concern, nervertheless sometimes they are needed to have a more 
realistic modelling and representation of the phenomenon under study. On the other hand, their 
presence introduces some relevant issues when considering inferential procedures. For this reason, 
the problem of eliminating nuisance parameters has become a central one in statistical literature and 
has been faced adopting several different perspectives.

In a frequentist framework the main tool used to carry out inferential procedures is the likelihood 
function ( )L θ ; for a comprehensive treatment of its properties and characteristics see Pace & Salvan 
[1]. When dealing with the presence of nuisance parameters, to gain better inferential performances, 
we need to isolate interesting features of the likelihood function.

A convenient way to proceed is to resort to conditional or marginal likelihood (see, e.g., Pace 
& Salvan, 1997, Ch.4), [1]. They are both genuine likelihoods, respectively under the conditional 
and marginal reduced models, therefore sharing the same properties of the likelihood function. 
Unluckily, marginal and conditional likelihood arise essentially only in some specific situations, 
e.g. when dealing with exponential and group families, thus reducing their applicability in more 
complex situations.

Alternatively several ways to obtain pseudo-likelihood functions have been proposed. Pseudo-
likelihood is a function whose behavior is as similar as possible to the one of a genuine likelihood 
but which is broadly based on an incomplete specification of the underlying model. In the current 
context it has to be intended as a function of data depending only on the parameter of interest. 
More formally, let ( ) ( ){ }: ,Λ ψ = λ ψ λ ∈θ

 
denote the parameter space for λ  when ψ is fixed and 	

		  the corresponding set of likelihood functions. The idea, in the derivation of 
pseudo-likelihood, is to build a function summarizing Lψ . However, as noted by Severini [2], 
the construction of pseudo-likelihood involves some arbitrariness in defining what constitutes an 
effective summary of Lψ ; this has led to different proposals, having different rationales behind.

The profile likelihood is one of the most used pseudo-likelihoods. It summarizes Lψ using its 
maximum value as 

				 
Despite being widely used, profile likelihood has 

some well known drawbacks encountered for example when dealing with particular shapes of the 
likelihood function [3], or when the number of nuisance parameters is large with respect to the 
sample size. To overcome some of these drawbacks several modifications have been proposed as 
the modified profile likelihood [4] and the adjusted profile likelihood [5]. These modifications are 
known to perform well in the elimination of nuisance parameters and to have some desiderable 
properties as, for example, they approximate marginal or conditional likelihoods, when available.
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Abstract

In the field of biostatistics it is often required to develop inferential tools dealing with the presence of nuisance 
parameters. The most adopted solution is to resort to pseudo-likelihood functions, having properties similar to the 
ones of a genuine likelihood. A possible choice is to use the integrated likelihood where the nuisance parameters 
are eliminated by means of integration with respect to a weight function. The selection of the weight function turns 
out to be crucial since it could have a strong impact on the properties of the resulting integrated likelihood. After 
having introduced the concept of pseudo-likelihood, the definition and the properties of the integrated likelihood, 
the focus will be on reviewing the main alternatives to choose the weight function according to different inference 
paradigms.

( ) ( ){ }L L , :ψ = ψ λ λ ∈ Λ ψ

( ) ( ) ( ) ( )pL L , sup L , .ψ λ∈Λ ψψ = ψ λ = ψ λ

( ){ }YF p y; , y Y,= θ ∈ θ∈θ
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This work focuses on a different approach to eliminate nuisance 
parameters by the construction of a pseudo-likelihood, that is the 
integrated likelihood [2,3,6,7]. The integrated likelihood summarizes 
Lψ by mean of integration with respect to the so called weight 
function ( )π λ ψ . As will be clarified in the next section there are some 
advantages in using the integrated likelihood when dealing with 
nuisance parameters but, at the same time, the selection of the weight 
function ( )π λ ψ  is required. Generally there is not a straightforward 
way to select the weight function, with the exception for the case of 
group families where the right invariant Haar density for λ  should 
be considered [8]. At the same time this choice could have a strong 
impact on the resulting integrated likelihood and on the derived 
inferential procedures. The aim of this work is to review the proposed 
methods to select the weight function.

In Section 2 we briefly introduce the integrated likelihood and its 
properties. In Section 3 we examine some proposed methods to select

( )π λ ψ trying to take into consideration both the frequentist and the 
Bayesian paradigms. Lastly, in Section 4, we present some concluding 
remarks.

Integrated Likelihood
The integrated likelihood is defined as 

( ) ( ) ( )IL L , d
Λ

ψ = ψ λ π λ ψ λ∫
and constitutes an interesting way to deal with the presence 
of nuisance parameters. The idea is to build a summary of Lψ

substituting the maximization step, required in the derivation of the 
profile likelihood, with an average. This leads to several advantages: 
first of all, being an average over all the conditional likelihood 
functions given nuisance parameters, it allows incorporating directly 
the corresponding uncertainty. A maximization approach does not 
allow to take into account this uncertainty and many of the available 
modifications of the profile likelihood are indeed adjustments aiming 
to consider this drawback. This implies that ( )IL ψ offers often a 
more informative summary of Lψ with respect to ( )pL ψ also, the 
asymptotic properties of the integrated likelihood are superior with 
respect to the ones of the profile likelihood. Moreover, the integrated 
likelihood is always available, also in non-regular and more complex 
models where conditional and marginal likelihood cannot be used. 
Lastly, besides the theoretical motivations, computationally the 
maximization step could be trickier with respect to the integration 
that is often numerically more stable and for which we can rely on 
several methods specifically conceived for solving integrals: Grazian 
& Liseo [9] show how to obtain an integrated likelihood considering 
ABC algorithms while, for a detailed review about integration 
algorithms to compute the integrated likelihood, the reader could 
refer to Zhao & Severini [10].

The integrated likelihood naturally comes out in a Bayesian 
framework where the weight function is the conditional prior 
density of λ given ψ . As Berger et al. [3] point out; the elimination 
of nuisance parameters in a Bayesian setting does not attract too 
much attention because it seems obvious to consider, for example, a 
uniform-integrated likelihood as 

( ) ( )uL L , d
Λ

ψ = ψ λ λ∫

where a uniform prior for λ is considered.

In this framework the choice of the weight function could 
naturally be recast as a prior elicitation problem, a topic that has 
attracted a great amount of literature that cannot be comprehensively 
reviewed here. The immediacy of this approach could be somehow 
lost when facing situations with a great number of nuisance 
parameters: since it is possible that these parameters do not have a 
clear meaning, the elicitation of the corresponding prior distributions 
could be troublesome.

The use of integrated likelihood has also been studied when 
considering a frequentist approach to inference. It has been shown 
that, with specific choice for the weight function, the resulting 
pseudo-likelihood could have some properties of a genuine 
likelihood. A relevant difference with Bayesian framework is that, in 
this context, we do not have to worry about ( )π λ ψ being a proper 
density function.

The next section aims to review some of the proposed methods 
to select the weight function, highlighting properties, advantages and 
drawbacks of each one of them.

Choice of the Weight Function
Bayesian approaches

In Liseo [7] we can find one of the first attempts to analyze the effect 
of different choices of the weight function on the resulting integrated 
likelihood. The elimination of nuisance parameters is studied from 
a Bayesian point of view, highlighting how the integrated likelihood 
comes out naturally in this framework. Let ( ) ( ) ( ),π ψ λ = π ψ π λ ψ
be the joint prior distribution. Inference on the parameter of interest 
is based on its posterior distribution (i.e. the marginal posterior 
distribution) that, given a sample ( )1,..., ny y y= is defined as 

( ) ( ) ( ) ( ) ( ) ( )Iy L , d L ,Λπ ψ ∝ π ψ ∫ ψ λ π λ ψ λ = π ψ ψ

clearly showing how integrated likelihood obviously emerges.

Therefore, from a Bayesian point of view, the critical step is given 
by the elicitation of the prior distribution. Since often we do not 
have previous information about nuisance parameters, frequently 
an objective approach has been considered, trying not to introduce 
subjective information about parameters that are not of interest.

Among the available choices of noninformative prior distributions 
the Jeffreys one [11] and the reference prior [12] are commonly used.

In the unidimensional case the Jeffreys prior for a parameter is 
defined ν as

( ) ( )J i ,π ν ∝ ν

where ( ) ( )2
2i E ν ν = − ∂ ∂ν 

 is the Fisher information with 
( ) ( )log Lν = ν . This prior is invariant under reparametrization 

and does not depend on the declared parameter of interest. In 
multidimensional cases Jeffreys itself questioned the effectiveness 
of this approach since this method would seek the noninformative 
prior for the entire vector of parameters introducing a form of 
bias in the procedure, when the interest is restricted only to some 
elements of the vector. As an alterntive, Jeffreys proposed to assume 
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independence between the parameters and to obtain the joint prior 
distribution as the product of the marginal ones. This way to proceed 
creates a link with the orthogonalization idea that will be introduced 
when considering frequentist approaches in the following.

The reference prior method could be seen as a way to overcome 
the issues of the Jeffreys’ one in multidimensional context. It is 
based on the maximization of an asymptotic version of the expected 
Kullback-Leibler divergence information between the prior and 
the posterior parameter distribution. The idea is to use the least 
informative prior distribution in the sense of letting the data to “speak 
most loudly”; for a more formal definition see Berger et al. [13]. In 
the specific framework considered, an appealing characteristic of the 
reference prior method is that, in multiparameter case, it allows for an 
explicit distinction between parameters of interest and nuisance ones 
inducing an importance ordering and grouping of the parameters 
according to the specific inferential aim.

When dealing with the elimination of nuisance parameters Liseo 
[7] shows that, in some particular examples of interest, the use of the 
reference prior leads to better performances with respect to Jeffreys 
and classical frequentist approaches such as profile likelihood and its 
modifications.

As Berger et al. [3] state “there are as many integrated likelihood 
as there are priors”; thus since subjectivity could have its role in the 
prior elicitation, it turns out to be impossible to list comprehensively 
the possible choice for the weight function in this framework. A 
promising and interesting choice that is worth citing consists in 
consider probability matching priors [14-17]. Here the idea is to use 
a prior distribution ensuring either exact or approximate validity of 
Bayesian credible regions from a frequentist point of view. Further 
alternative ways to obtain a marginal posterior distribution in a 
Bayesian setting can be found e.g. in Kass et al. [18] and Leonard et 
al. [19].

Lastly note that, even if their attention is not restricted to this 
framework, a more thorough discussion about the use of integrated 
likelihood in Bayesian framework can be found in Berger et al. [3].

Frequentist approaches

Although it arises in an intuitive manner in a Bayesian framework, 
the integrated likelihood can be used effectively also in a frequentist 
context and some attempts to link the choice of the weight function to 
the usefulness of the integrated likelihood for non-Bayesian inference 
have been made. Methods to select ( )π λ ψ have been developed 
following different routes.

One approach attempts to build an integrated likelihood having 
some of the properties of a genuine likelihood. The seminal work 
by Severini [2] studies how to select ( )π λ ψ in such a way that the 
resulting integrated likelihood behaves as a genuine likelihood. A first 
remark is that, since there is arbitrariness in the choice of the weight 
function, ( )IL ψ  should be as insensitive as possible to it; we find this 
to be coherent with the consideration in Liseo [7] about the adequacy 
of noninformative priors.

Before going through the details of the proposed method it is 
necessary to introduce the concept of weakly unrelated and strongly 

unrelated parameter. A parameter λ is weakly unrelated to ψ if

 
	         

for deviation of ψ such that 

                     	

where 

     is the maximum likelihood estimator of λ  for fixed ψ  and     is 
the maximum likelihood estimator of ψ . On the other hand, two 
parameters are strongly unrelated if they are weakly unrelated and, in 
addition,  	         for deviation of ψ such that                      . 	
Note that orthogonality of ψ and λ  assures that parameters are 
weakly unrelated, while it is not sufficient for the stronger condition 
(see e.g. [1], Ch. 4.7).

If a nuisance parameter λ  is, or can be derived as at least weakly 
unrelated to the parameter of interest ψ , Severini [2] suggests to 
choose ( )π λ ψ in such a way that ψ  and λ are independent. The 
resulting likelihood will have indeed the following desiderable 
properties:

•	 Suppose that the likelihood can be factorize as                   
	Choosing the weight function as suggested assure that the 

resulting integrated likelihood will correspond to ( )1L ψ , giving 
an intuitive result;

• 	 When considering an integrated likelihood ( )IL ψ , generally 
the first two Bartlett identities do not hold. Severini [2] 
shows that, if we choose the weight function in the proposed 
way, ( ){ } ( )' 1

IE ; 0 n−ψ θ =

 
where ( ) ( )I I. log L .=

 
and the 

superscripts indicates the number of derivatives to be 
taken. Furthermore, if λ and ψ  are strongly unrelated, 

( ) ( ) ( ){ } ( )T" 1
I I IE ' ' ; 0 n .−ψ + ψ ψ θ =  

 
Therefore this proposal 

allows to recover the score and information unbiasedness, at least 
asymptotically;

• 	 if we consider a Laplace approximation of the integrated 
likelihood we get

	            					                (1)

 	 with ( ) ( )2 2, ,λλ ψ λ = ∂ ψ λ ∂λ  and c not depending on ψ . Again, 
if we work with strongly unrelated parameters and if we select the 
weight function in the way proposed, we will have that, ignoring 
terms of order ( )1

20 n− , ( )IL ψ
 
will not depend on the form of 

( ).π λ This turns out to be relevant since we want to work with 
integrated likelihood being insensitive to the features of the prior 
density for the nuisance parameter;

• 	 The resulting integrated likelihood will be invariant with respect 
to interest-respecting reparametrization of the form ( ),τ = τ ψ λ
with ( )1 2,τ = τ τ such that 		 and ( )2 2 ,τ = τ ψ λ .
Lastly, resorting again to the Laplace approximation given in (1), 

it can be shown (see [2], Appendix 2) that
 		           where 0c is a constant not depending on ψ and ( )ML ψ is an 

approximation of the modified profile likelihood of Barndorff-Nielsen 
[4]. This relation is useful both to study the properties of ( )IL ψ and to 
further highlight why the way proposed by Severini [2] to choose the 
weight function could be particularly appropriate since the modified 
profile likelihood is known to have some desiderable properties and 
to work well in many applications.

A possible limitation of this approach is the need to have 
unrelated parameters. It is known that we can obtain weakly unrelated 
parameters starting from the orthogonal parametrization but this 

  ( )1
20 n−

ψλ = λ +



ψλ ψ

  ( )10 n−
ψλ = λ +

( ) ( ) ( )1 2L L L .θ = ψ λ

( )1 1τ = τ ψ

( ) ( ) ( ) ( ){ }1
2MI 0L c L 1 0 n 0 ,−ψ = ψ + ψ − ψ



1
20 n

− 
ψ = ψ +  

 

 0(1)ψ − ψ =

( ) ( ) ( ) ( ) ( ){ }
1
2 1

1 pL cL , 1 0 n ,
−

−
ψ ψλλψ = ψ − ψ λ π λ ψ +
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requires the solution of differential equations that can be tricky. 
Furthermore, if ψ  is not a scalar, the solution may not exist (see, e.g. 
Cox & Reid, 1987). In order to avoid such complications, Severini [2] 
proposes a way to construct a nuisance parameter strongly unrelated 
to the one of interest. In specific, let ( ), ;φ ≡ φ ψ λ ψ be the zero-score-
expectation parameter obtained as the solution to the equation

It can be shown that φ  is strongly unrelated to ψ . When studying 
frequentist properties of the integrated likelihood we have to take into 
account that φ , defined as before, depends on the observed data.

A further, alternative approach aims at constructing the integrated 
likelihood in order to result in superior statistical procedures. It finds 
its motivation considering that the statistical procedures based on 
the integrated likelihood derived as in Severini (2) are not necessarily 
superior to those obtained choosing the weight function in other 
ways. The aim, when obtaining pseudo-likelihood, is to have a useful 
tool for subsequent inferential goals. Therefore is certainly interesting 
to study if it is possible to obtain, choosing appropriately ( )π λ ψ an 
integrated likelihood giving better inferential performances.

Severini [20] starting from these considerations focuses on 
studying the properties of the resulting inferential procedures rather 
than on studying the properties of the integrated likelihood itself. 
Assume ψ

 to be scalar. We define the signed likelihood ratio statistic 
as

					                
,

while the integrated likelihood ratio statistic is simply obtained 
by substituting p , the profile log-likelihood, with the corresponding 
integrated log-likelihood, giving 

					                
,

where ψ is the maximizer of ( )I ψ .

The main aim of the work is to study the asymptotic properties 
of R . As a side and related contribution the impact of the weight 
function on these properties is studied. For example it is shown that, 
choosing the weight function in the way introduced in the previous 
section, we have that       is standard normal with error ( )10 n− . Another 
possibility is given by choosing ( )π λ ψ in such a way that

					                      

,

where 
 		                 

and 		                 . 

Thus it is assured that the resulting integrated likelihood is 
asymptotically standard normal to second order.

The work by Severini [20] allows to understand how the choice of 
( )π λ ψ , affecting the properties of ( )IL ψ , could obviously have also 

an impact on the inferential process and how we can therefore choose 
it in such a way to gain better asymptotic properties for inferential 
procedures.

In Severini [21] the focus is still on choosing the weight 
function aiming to have resulting statistical procedures based on 

the integrated likelihood that enjoys some good properties. It is 
specifically highlighted that score and information unbiasedness, not 
being directly involved in the construction of statistical procedures, 
do not automatically guarantee optimal statistical properties. Hence 
the author focuses on the coverage probabilities of the integrated 
likelihood ratio based confidence intervals and on the mean squared 
error of the maximum integrated likelihood estimator.

Considering a Laplace approximation ( )IL ψ
 
can be expressed as

		            				      (2)

 where ( )AL ψ
 
is the Cox-Reid adjusted profile likelihood [5]. 

From this relation it can be shown that, if the aim is to work with an 
approximately score unbiased integrated likelihood, ( )AL ψ

 
could be 

used. Therefore the subsequent focus is on showing how an adequate 
choice of the weight function could lead to an integrated likelihood 
having better frequency properties with respect to ( )AL ψ .

Define 
 				      

and let ,iψ ψ be 
the block of the expected information matrix for the parameter of 
interest. Furthermore let 

     
and 

    
be respectively the length of the 

likelihood ratio confidence interval based on ( )IL ψ
 
and ( )AL .ψ It can 

be shown that the expectation of 
     

will be smaller with respect to the 
one of 

	
whenever 

		
is decreasing in ψ . Therefore 

we will have shorter intervals if ( ) ( )h , i ,ψ ψψ ∂ ψ λ ψ λ ∂ψ  is sufficiently 
negative.

Analogous results are found when considering the mean 
squared error of the point estimators based on ( )IL ψ and ( )AL .ψ

The author shows indeed that 
   

is again preferable to 
    

whenever 
( ) ( )h , i ,ψ ψψ ∂ ψ λ ψ λ ∂ψ  is sufficiently negative. Note that these 

results also hold considering the approximation to the modified 
profile likelihood considered in previous sections. Lastly a word of 
caution is needed since the discussed results are not invariant with 
respect to reparametrizations of the parameter of interest hence we 
should carry on the comparison keeping in mind the parametrization 
used.

The reason why we obtain the results above is that the prior 
density in the integrated likelihood imposes a stochastic constraint 
on the parameters. We can see the approximation in (2) as if we were 
adding to ( )AL .ψ an observation    having weight given by            Since 
the density of   should not be ( ).π ψ , the addition leads to an 
improvement whenever   

	  
is in accordance with the true density. 

Thus choosing adequately the weight function, we can have improved 
performances with respect to the ones obtainable focusing on 
Bartlett’s identities.

Miscellanea
In the previous sections we focused on two dif﻿ferent approaches 

to the problem of choosing the weight function in the integrated 
likelihood by discussing some of the most relevant works in these 
frameworks since providing a complete review of the literature is 
beyond the scope of the paper. Nonetheless as we said the problem 
of choosing a prior, from a Bayesian point of view, has led to a 
great amount of literature both from an objective and a subjective 
perspective. The selection of the weight function could also be based 
on some subjective reasons based on possible knowledge on the 
nuisance parameter in specific applications. For example Kitakado et 

R

( ) { } ( ){ }
( ) ( )0 0

0 0 , ,
E , ; , E , ; , 0.λ λ ψ λ = ψ φ

ψ λ ψ φ ≡ ψ λ ψ λ = 

( ) ( ) ( ){ }
1
2

p pR sgn 2 = ψ − ψ ψ − ψ  
 

( ) ( ) ( ){ }
1
2

I IR sgn 2 = ψ − ψ ψ − ψ
 
 

( ) ( )
( ) ( )1

2, ,

,

,1log 0 n
6 i ,

ψ ψ ψ

ψ ψ

µ ψ λ∂
π λ ψ = +

∂ψ ψ λ

( ){ }3

, ,

E , ; ,
n

ψ
ψ ψ ψ

ψ λ ψ λ
µ =



( ) ( ) ( ) ( )1
I AL L 1 0 n ,−

ψ  ψ = ψ π λ ψ + 

( ) ( ) ( ) ( )h , log ,h , h ,ψψ λ = π λ ψ ψ λ = ∂ ψ λ ∂ψ

IC AC

AC ( )
( )

h ,
i ,

ψ

ψψ

ψ λ
ψ λ



Iψ 

Aψ

λ
λ

( ).π λ ψ

( )π λ ψ

IC

( ) ( ){ }2
,i , E , ; ,

n
ψ ψ ψψ λ = ψ λ ψ λ



Citation: Casa A. On the Choice of the Weight Function for the Integrated Likelihood. 
SM J Biometrics Biostat. 2018; 3(3): 1033.

Page 5/6

Gr   upSM Copyright  Casa A

al. [22] base their choice of the prior density on some beliefs related to 
the specific phenomenon under study and hence, in this specific case, 
linked to some previously available genetic knowledge.

The issue of choosing a weight function has been faced also in 
model with stratum nuisance parameters [23]. Let be ( )1 qy y ,..., y=

a sample where     is a realization from the mi-dimensional random 
variable Yi having density ( )i i ip y ; ,ψ λ where ψ is the parameter of 
interest and ( )1 q,...,λ = λ λ the nuisance one. It is not unlikely that the 
number of nuisance parameters is of the same order as the sample 
size and, in this situation; procedures based on profile likelihood 
are known to perform poorly. Assuming independence among the 
strata the likelihood can be expressed as ( ) ( ) ( )iq

i 1 iL , L , ,=ψ λ = ∏ ψ λ where 
( ) ( )i

iL ,ψ λ constitutes the likelihood contribution for the i-th stratum 
and q is the sample size as well as the dimension of λ . Hence the 
integrated likelihood in this setting is defined as

 			 
It is shown that choosing the weight 

function as in Severini [2], with adjustments due to the particular 
context, leads to an improvement in the accuracy of inference with 
respect to profile likelihood based solutions. Moreover the resulting 
properties of the integrated likelihood are similar to those of modified 
profile likelihood.

One of the possible drawbacks of the previous approach is that, to 
obtain the integrated likelihood, the model has to be reparametrized. 
In literature, in the same framework, there are some proposed 
alternatives such as the one in Arellano and Bonhomme [24]. The 
authors propose data-dependent priors allowing not to reparametrize 
the model and show that this priors still are able to reduce the bias of 
the score function. Lastly note that this approach shares a strong link 
to the one proposed in Severini [2] if a reparametrization of unrelated 
parameters is considered.

Other works resorting to the integrated likelihood to eliminate 
nuisance parameters can be found in various areas. For example 
Cortese & Sartori [25] consider a similar problem as in De Bin et al. 
[23] but dealing with survival models with clustered and censored 
data. In He & Severini [26] the authors assume a Gaussian process 
as weight function to average over the unknown function in a 
semiparametric regression model setting. Bellio & Guolo [27] show 
that an integrated likelihood approach could be good also for small 
sample inference in Meta analysis leading to better inferential 
properties with respect to the modified profile likelihood. Lastly this 
approach has found fruitful application also when modelling data 
coming from capture-recapture type experiments [28].

Discussion and Conclusion
When dealing with inferential problems in the presence of 

nuisance parameters a common solution, to avoid the related 
drawbacks, is to resort to pseudo-likelihood functions. An appealing 
choice, in this context, is represented by the integrated likelihood. 
Some of the reasons why it would be preferable to consider the 
integrated likelihood over the profile likelihood have been highlighted 
in the article. Despite these advantages, this approach requires the use 
of a weight function that could have an impact on the properties of the 
resulting pseudo-likelihood and whose choice is not straightforward.

In this work we reviewed some of the possible way to proceed when 
choosing the weight function. Integrated likelihood arises naturally in 

Bayesian paradigm to inference but could be successfully considered 
also from a frequentist point of view. We tried to consider both these 
approaches highlighting the main differences and similarities.

Generally speaking the works in the literature do not give 
indications about a specific weight function but allow selecting a class 
of functions having some characteristics. It is relevant to point out that 
there is not an optimal choice in selecting ( )π λ ψ since the definition 
of optimality could depend on the specific aim of the analysis. 
Concluding, note also that in the analysis certain formulations of the 
considered models could suggest a convenient choice for the weight 
function; see Berger et al. [3] for a more detailed discussion.
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