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Introduction
Application of mathematics and statistics to the study of infectious disease can be traced back 

to 1760 with the study on small pox - a fatal disease of that time [1] and subsequently different 
types of models have been developed to understand the disease transmission process and being 
developed till date [2-4]. In recent years, analyses of mathematical models and comparisons with 
incidence data have made it possible to explore the relative benefits of the theoretical studies on 
immunization strategies [2,5-8] and estimation of critical vaccination level to eradicate an infection 
[9]. Statistical or Data-based models that fit curves of past temporal prevalence of a disease, does 
not make any assumptions about the internal mechanisms that a mathematical model provides and 
hence, become more popular among researchers in infectious diseases. Several statistical or data 
based models have been used to model different infectious diseases, such as, SARS outbreak [10,11] 
Hepatitis A virus infection [12], ovine Johne’s disease [13], HIV [14] etc. But it is in malaria, where 
most of the data-based and time series modeling approaches are observed apart from standard 
mathematical models [4].

Malaria caused by Plasmodium protozoan is the most important tropical parasitic disease of 
humans for centuries, remaining widespread throughout the world. Current estimates describe 
the annual global burden of malaria as: 300-500 million cases, 1.1 million deaths and 44 million 
cases of disability [15] and it is a public health problem in several countries, including sub-Saharan 
Africa, Indian sub-continent, south-east Asia and Oceania and the Americas [16,17]. Despite the 
introduction of control programs in many parts of the world over the past few decades, the impact of 
malaria on human populations continues to increase. Epidemiological research on malaria is largely 
based on two distinct measures of parasite abundance within communities of people. The first is the 
incidence of infection or disease and the second measure is the prevalence of infection or disease. 
The measurement of incidence or prevalence is often based on the stratification of the population 
under study with respect to a variety of factors such as age, sex, social factors, environmental 
variability etc as is found in the sources [18,19]. Regression analysis has been used extensively to 
understand how disease prevalence changes based on other variables such as, environment, etc. 
Suitable models have been fitted to see the incidence pattern of the disease using an extensive data 
set for studying the climatic suitability in malaria transmission in Africa through MARA project 
[20] and similarly in Europe by Kuhn et al [21]. Subsequently several other techniques were used 
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Abstract

Vector-borne diseases, such as Malaria, are major causes of human mortality in many areas of world, 
especially in the developing countries. Statistical and data-based models can provide an explicit framework 
to develop an understanding of infectious disease transmission dynamics. Application of different time series 
models to analyse and predict financial data as well as epidemiological data is of long interest to researchers. It 
is always interesting to see how the time series models that are extensively used in the analysis of financial data 
can be applied and extended to explain epidemiological data. In this paper, we have studied epidemiological 
data (malaria prevalence) related to Slide Positivity Rates and deaths due to Plasmodium vivax, using three 
major classes of time series models, namely Auto-Regressive Integrated Moving Average (ARIMA), Generalised 
Auto-Regressive Conditional Heteroskedastic (GARCH) and Random Walk. Our results show that as expected 
the chosen models fit excellently with the financial data but also show good potentiality to fit epidemiological 
data and provide excellent predictions. The results demonstrate the applicability of such time series models in 
epidemiology, specifically for malaria prevalence, where these models with appropriate choice of parameters 
have not been used extensively. As far as future prevalence pattern is concerned, the prediction of these models 
may help researchers and public health professionals to design control programmes for malaria.
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to study the disease pattern under the influence of environmental 
factors, such as, Logistic regression modeling [22]; Poisson regression 
modeling in Indonesia [23]; Binary logistic regression modeling 
with fractional polynomial transformations [19]. In recent studies, 
researchers have used techniques such as time series analysis to show 
seasonality pattern in the malaria incidence [24] and Monte-Carlo 
simulation methods to model risk factors [25-27]. However, there 
exist drawbacks, which affect the suitability of these models being 
fitted into the incidence pattern of the disease. A recent study by 
Chatterjee and Sarkar [28], attempted to deal with these drawbacks by 
developing a simple non-linear regression methodology in modeling 
and forecasting malaria prevalence in Chennai city, India. Though 
much of research has been dedicated to the understanding of this 
disease and its probable influences, yet a robust and unanimous 
approach has remained elusive. 

Finance and Epidemiology are two distinct disciplines that have 
evolved in parallel and have very low similarities with respect to 
statistical and mathematical modeling. Hence, it is always interesting 
to see if the time series models that are used extensively in the analysis 
of financial data may be used to analyze epidemiological data so as to 
develop short term forecasting models which can help in obtaining 
good predictions. Application of time series models to analyse financial 
data has a long history [29-35]. Several models were developed for 
predicting financial asset returns [36-38] and a class of models namely 
Generalized AutoRegressive Conditional Heteroskedastic (GARCH) 
models were used extensively in studying the volatility clusters with 
appropriate modifications and extensions. Researchers in other 
fields have also utilized the properties of this family of models, e.g. 
speech signal modeling in time-frequency domain [39]. Similarly 
for modeling time series data, AutoRegressive Integrated Moving 
Average (ARIMA) class of models and Random Walk model have 
been used extensively in almost all fields [10,12,40,41].

The major use of these models is to fit past data and estimate 
the future. This capability of a model improves the credibility of the 
underlying hypothesis of the model. Thus in a non-deterministic 
scenario, if we need to forecast the future behavior of a system based on 
past observations, these models provide the best predictions, leading 
to wide acceptance of such models in analyzing epidemiological 
data. Epidemiological data show a seasonal pattern with a long term 
trend and seasonal fluctuations [2], while financial data is in general 
fat-tailed, characterized by higher kurtosis and clusters of volatility 
between groups of data [42]. The inherent differences in the two 
datasets as explained above lead to the fact that models used for 
analyzing financial data sets are very scarcely used in epidemiological 
studies, specifically for malaria prevalence data. 

The main aim of this paper is to demonstrate that with a greater 
understanding of the data, the established models of predicting asset 
returns can be used for predicting and forecasting vector borne disease 
dynamics (malaria, in our case). To establish this, we have chosen 
three general classes of models, namely the ARIMA, the GARCH 
and the Random Walk models. The results of the paper will also 
demonstrate that while the aforementioned models are applicable to 
the study of epidemiological datasets, some other models specifically, 
Geometric Brownian motion - a diffusion process with continuous 
time domain may be inappropriate for studying the same. Suitability 
of the chosen class of time series model in analyzing financial data has 

been demonstrated on a test data set obtained from daily stock prices. 
On the basis of the best fitted model, predictions of prevalence of the 
disease in a comparable time horizon has also been attempted along 
with goodness of fit results. 

The epidemiological data consists of two types of time series-one 
a shorter time series of 12 time points (monthly data for one year) and 
the other, a considerably longer time series of 36 time points (monthly 
data for three years). This is to demonstrate comprehensively whether 
the selected models work well for shorter as well as longer time series. 
We have also performed suitable analysis for testing the between-
groups homoskedasticity for all the data sets and diagnostic tests to 
assess the goodness of fit for the time series models. Our study reveals 
that some time series models, which are historically proven to work 
well for modeling asset returns, can be used successfully to analyse 
the behavior of epidemiological time series and to predict the disease 
prevalence in both shorter and longer time scales.

Materials, Methods and Models
Overview of the data

The epidemiological data, (i.e. malaria prevalence) is collected 
from the Vector Control office, Malaria section of the Municipal 
Corporation of Chennai office of the Government of Tamil Nadu, 
India. The data consists of two types of time series: (i) a short time 
series with 12 time points consisting of Plasmodium Vivax (PV) 
deaths in Chennai, from January 2006 to December 2006 and (ii) 
a comparatively longer time series with 36 time points consisting 
of Slide Positivity Rates (SPR = No. of positive cases detected / No. 
of Blood smears collected) of malaria prevalence in Chennai, from 
January 2002 to December 2004. During the period of January 2002 
to December 2004, the Vector Control Office in Chennai has covered 
a population ranging from 4.27 mn to 4.42 mn. The number of 
blood smears collected lies in the range of 16306-63717 depending 
on the seasons. The number of cases tested positive are in the range 
of 1184-4275, out of the blood smears collected. Further details of 
the data collection are available in Chatterjee and Sarkar [28]. More 
recent data could not be obtained for the purpose of the study owing 
to archaic methods of data keeping in the Municipality and lack of 
updated data.

Preliminary Testing of data

Tests for normality, homogeneity of the data: Since we are assuming 
time series models in continuous time domain as well as conditional 
non-heteroskedasticity, for preliminary inspection, equal variance 
between samples in all data sets is tested [43]. To test this, we used 
the Levene’s test for homogeneity [44] by dividing the data sets into 
subsets by the period of volatility (breaking the data sets suitably at 
the points where a local optimum is reversed) and any deviation in 
the variance between samples, thus constructed, is detected before we 
fit the models. If the resulting p-value arising from the test is less than 
some critical value (typically .05 - level of significance), it is inferred 
that the obtained differences in sample variances are unlikely to have 
occurred based on random sampling. The results from the Levene’s 
test on the SPR and PV deaths data sets yield p-values of 0.6726 and 
0.1743, respectively.

As a fundamental check of normality in the data sets, Q-Q plots 
and histograms are shown in Figure 1.
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To ascertain the existence of any seasonal pattern or cyclical 
behavior of the data sets we studied the Auto-Correlation Functions 
(Figure 2). Detailed discussion on ACF is available in Chatfield [41]. 

Models

Models used in our study are standard time series models. Brief 
descriptions of all these models are provided below:

AutoRegressive Integrated Moving Average models (ARIMA): 
The ARIMA models are the extension of the simpler AutoRegressive 
Moving Average (ARMA) models and are most well known class of 
models considered in time series studies, which helps to model the 
non-stationary time series data by converting them into a stationary 
series with appropriate differencing. We assume that historical 
data, comprising a time series {xt: t=1,2,…,n} is provided, and then 
follow the Box-Jenkins methodology [45] to fit the model using the 
given time series. The major steps to be followed are: 1) Tentative 
identification of a model from the ARIMA class; 2) Estimation of 
parameters in the identified model; and 3) Diagnostic checks. If the 
tentatively identified model passes the diagnostic tests, the model is 
ready to be used for forecasting, if not, the diagnostic tests should 
indicate how the model ought to be modified, and a new cycle of 
identification, estimation and diagnosis is performed.

Fitting an ARMA (p,q) model: To fit an ARMA model, we look at 
either the correlogram or the partial correlogram and based upon 
the cutoff lag we decide an MA (q) or AR (p) model. If inference 
is difficult from cut off properties of correlograms, we look for an 
ARMA (p, q) model with non-zero values of p and q. We start with a 
simple model like ARMA (1,1) and if it is inadequate, we improve it 
to higher orders. Every additional parameter improves the fit of the 
model by reducing the residual sum of squares. But with increasing 
parameters and complexity of the model, the forecasts of the model 
may be misleading. Tetko et al [46] illustrates this as the problem 

of over-fitting, and hence there is a need for Akaike’s Information 
Criterion (AIC), which is discussed later. 

AutoRegressive Conditional Heteroskedastic models (ARCH): Like 
financial data [47], often in epidemiological time series the present 
value is influenced by the previous value (since previous disease 
incidence affects the future occurrence of the disease) and display 
a typical fat-tailed behavior (soon after a large change there exists a 
period of high volatility). This property of conditional variance is also 
known as conditional heteroskedasticity and is modeled using the 
ARCH class of models [37]. The major steps followed in these type of 
models are: 1) Specify the mean and volatility equation of the returns 
at time t; 2) For serial dependence in data, once the mean equation 
is specified the residuals of mean equation is used to test for ARCH 
effects and 3) Specify volatility model if ARCH effects are significant 
and perform a joint estimation of mean and volatility equations. An 
ARCH model with parameter p, defined as ARCH (p) is represented 
by the following equation, 

where{et} is a sequence of i.i.d. standard normal random variables. 
Simplest representation of ARCH (p) is ARCH (1) defined as:

We have applied this modeling technique to model our data using 
Xt as the monthly SPR value / PV deaths. 

Random Walk model: In data sets where the current values are 
dependent on the values at one lag in time [48], we often use Random 
Walk models satisfying the ITO process [49]. The general model is 
defined as:

Where X(t) is the value of the series to be modeled and ΔZ(t) is 
the adjusted error term. 

Recently, Chatterjee and Sarkar [28] demonstrated for the 
epidemiological data of the disease prevalence pattern of malaria is 
such that the Slide Positivity Rate (SPR) at the current time is highly 

Figure 1: Histogram and Q-Q plots for:  (a, b) SPR values, and (c, d) PV 
deaths.

Figure 2: Auto-correlation functions of: a) SPR values and b) PV deaths.
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correlated with slide positivity rate of the previous time point. The 
variation due to host population, vector population, migration effects 
of host and vector populations are few major causes apart from the 
other noise factors, which may distort the disease prevalence pattern 
as compared to the previous time point. To provide forecasts in a 
short forecasting horizon (for our response variables) it is possible to 
merge all these fluctuating factors into one term and can be accounted 
for the noisy fluctuations in and around the disease prevalence of the 
previous time point through the random walk.

We state the random walk model as the stochastic alternative of 
the auto-regressive model and define the model as:

Where S(t) is the response variable (Monthly SPR/ Monthly PV 
deaths) at time t and dZ(t) is the error term defined as: 

Where, r(t) is the log of return of the random variable defined as: 

It is to be noted that E(dZ)=0 and V(dZ)=1 for the random 
variable dZ reconfirms the fact that the ITO process is being satisfied. 
We checked that this model is equally adept in predicting short and 
swift fluctuations around the mean of stock price data as well as the 
more stable and factor-driven fluctuations in the case of malaria 
prevalence. 

Diagnostic tests for model fitting

To assess the goodness of fit for the time series models, following 
diagnostics tests are carried out: (a) Augmented Dickey Fuller test 
to investigate the presence of a unit root, (b) Jarque-Bera test for 
normality of residuals and (c) Akaike’s Information Criterion to 
determine the best fitted model. Brief descriptions for each of these 
tests are given below:

Augmented Dickey Fuller (ADF) test: The presence or absence of 
unit roots helps in identifying the characteristics of the underlying 
time series. This means, if a time series has no unit roots, it is stationary 
and will exhibit mean reverting behavior in long run and also will 
have a finite variance, independent of time. This is extremely crucial 
in forecasting, assuming that the random error decreases over time 
in absence of unit root. On the other hand in presence of a unit root, 
the process is non-stationary and exhibit very weak or no tendency to 
return back to a long run trend, along with possessing time dependent 
variance and tending towards infinity over a long horizon of time. 
Presence of a unit root in a sample time series is tested through the 
ADF test [50]. It is an augmented version of the Dickey Fuller test for 

larger and complicated time series. The following model is adopted 
initially

where, α is a constant, β the regression coefficient for time trend 
and p the lag order of the autoregressive process. The unit root test is 
then carried out under the null hypothesis γ = 0 against the alternative 
hypothesis of γ < 0. Once a value for the test statistic is computed, it 
can be compared to the relevant critical value (DF) for the Dickey-
Fuller Test: 

Jarque-Bera test for normality of residuals: Jarque and Bera [51] 
devised this test to compare the deviation of the assumed distribution 
with that of the normal distribution. The test is based on the sample 
kurtosis and skewness for the fitted model and it is the measure of 
departure from normality. The test statistic JB is defined as: 

Where n is the number of observations (or degrees of freedom in 
general); S is the sample skewness, K is the sample kurtosis and are 
defined as:	

μ3 and μ4 are the third and fourth central moments, respectively, 
x is the samples mean, and σ2 is the second central moment, the 

variance.

Akaike’ s Information Criterion: One of the major objectives of 
this paper is to establish the best model that fits the epidemiological 
data. To establish this we have used the Akaike’s Information 
Criterion, which measures the appropriateness of forecasts of the 
estimated statistical models [52] and acts as a better tool for model 
selection. Several models used in predicting for the same data, may 
be prioritized by their AIC measure. Increasing the number of free 
parameters in a model always improves the goodness of fit. AIC not 
only rewards goodness of fit, but also includes a penalty which is an 
increasing function of the number of estimated parameters and also 
attempts to find the model that best explains the data with minimum 
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possible free parameters. It is imperative that the model with the 
lowest AIC measure will be regarded as the best. 

In the general case, the AIC is given as [-2ln(L)+2k], where ‘k’ 
is the number of estimable parameters in the approximating model 
and ‘L’ is the maximized value of the likelihood function for the 
estimated model. This ‘k’ has also been referred as the asymptotic bias 
correction [53]. In the special case of Least Squares estimation with 
normally distributed errors,

 AIC= 2k + n[ln(
2σ̂ )]

where σ̂ 2
 is the residual variance of the predicted model.

Tools used in the analysis

The package R 2.9.0 is used extensively for modeling methods and 
generating test statistics. Binary packages developed by researchers 
for R 2.9.0 are used, namely (i) “TSA” [54] (ii) “tseries” [55] (iii) 
“sde” [56] (iv)”graphics” by R team [57] (v) “Rcmdr” [58] and (vi) 
“subselect” [59]. For other analytical and graphical analysis including 
simple linear regression, we used Microsoft Excel 2007 and SPSS for 
Windows 11.5 [60].

Results
In this study we compared the most frequently known models 

of the time series class, namely, ARIMA, GARCH, and the Random 
Walk, with respect to two epidemiological data sets of completely 
different nature, a longer time series (malaria prevalence in terms of 
SPR values) and one shorter time series (in terms of PV deaths). 

For epidemiological data, we observe from the p-values (0.6726 for 
SPR and 0.1743 for PV deaths) of the Levene’s test stated earlier, that 
we cannot reject the null hypothesis of homoskedasticity. This implies 
that for the assumption of constant variance, the epidemiological 
data sets will not behave erratically. After inspecting Q-Q plots and 
histogram (Figure 1) for these two types of data (SPR and PV deaths) 
it appears that the epidemiological data sets stray from normality. 
Moreover, the auto correlation functions of the SPR data set (Figure 
2a) clearly indicate a seasonal pattern with the correlation function 
(exhibiting a sinusoidal curve over the number of lags). However, the 
PV deaths show no significant observable pattern (Figure 2b). 

We tried several options of the general models as discussed in 
Section 2 and with all the available data sets we optimized the fit to 
the data with permutation of parameters of the general model. In the 
following subsections we discuss the outcomes of the model fitting for 
each of the data types.

Time Series Models

First to check the suitability of all these time series models we 
applied them on the stock price data obtained from an open source 
(the New York Stock Exchange [61]) and observed that all the 
models provide excellent fits (Supplementary Information). Then 
all these methods are applied to our epidemiological data and the 
corresponding models are obtained, which are summarized in the 
following sub-sections.

Models for Slide Positivity Rates of malaria prevalence: This 
epidemiological data is a long time series and is fitted with the same 
classes of models discussed before. Figure 3 (a) shows the comparative 
plot of fits for different time series models to the SPR values. 

The characteristics for each of these fits are listed below and the 
statistical summary for the fitted time series is given in Table 1 and  
Table 2:

Figure 3: Fitted time series models for: a) SPR values and b) PV deaths.

Table 1: Statistical summary for the diagnostic tests on the fitted time series 
models.

Model and diagnostics
Epidemiological data

SPR PV deaths

                       ARIMA Model

Jarque Bera Test

Chi-square statistic 0.93 0.96

Degrees of freedom 2 2

p-value 0.63 0.62

Augmented Dickey-Fuller Test

D-F statistic -1.19 1.01

Lag order 3 2

p-value 0.89 0.99

ARCH Model

Jarque Bera Test

Chi-square statistic 0.53 0.62

Degrees of freedom 2 2

p-value 0.77 0.73

Augmented Dickey-Fuller Test

D-F Statistic -1.38 -0.73

Lag order 3 2

p-value 0.81 0.96

Random Walk Model

Augmented Dickey-Fuller Test

D-F statistic -1.7 -1.46

Lag order 3 2

p-value 0.69 0.78

Jarque Bera Test

Chi-squared statistic 1.93 0.65

Degrees of freedom 2 2

p-value 0.38 0.72
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1. 	 ARIMA (0,0,6): Moving Average model with dependency on 6 
previous error points (the result justifies the pattern of the auto-
correlation function shown in Figure 2(a)) is the best possible 
option among the ARIMA family. The yearly data fit generates 
errors that repeat half-yearly. This model gives R2 as 52.22% 
(marked as $$, Table 2) signifying a moderately good fit. 

2. 	 The ARCH (0,1) is the best possible option from the GARCH 
family for fitting the SPR values and gives R2 = 34.27% (marked 
as *#, Table 2), which is not very high compared to other fits. This 
is due to the fact that the SPR values in our data set do not show 
much variability in variance (also shown by the Levene’s test as 
stated before). Thus the conditional variance is not highly volatile 
for the model to be related.

3. 	 The Random walk model gives a high R2 value, 98.6%, which 
shows that a noise term added to the previous time point SPR 
value is good enough to predict future values of SPR.

For the SPR series, we observe from Table 1 that on the basis of 
p-values of both JB and ADF tests we are unable to reject the null 
hypothesis. Based on these tests, we infer that the residuals of the fits 
for all the time series models for SPR are normal and the unit root 
of the predicted series for all the models are stationary. We note that 
for a fairly long time series of the epidemiological origin, the models 
provide good fits for SPR values, except the volatility cluster model, 
since logically this is not applicable for modeling this data set due to 
low variance differences between groups. 

Models for Plasmodium vivax deaths: Figure 3(b) shows the 
comparative plot of fits for different time series models to Plasmodium 
Vivax (PV) deaths values. Like before the characteristics for each of 
these fits are listed below and the statistical summary for the fitted 
time series is given in Table 1 and Table 2: 

1. 	 ARIMA (2,2,4) is found to be the best model from the ARIMA 
family of models. This implies that the data series was not 
stationary in itself and differencing it two times makes the series 
stationary. Further on this differenced series we fit an ARMA 
model with 2 auto-regressive parameters and 4 error terms of 
previous time points. This gives an R2 of 86.24%.

2. 	 The ARCH (0,1) model gives the best fit from the GARCH family 
indicating general dependence of volatility terms on variances of 

previous series. This model has R2 of 51.5% (marked as **, Table 
2), which indicates not a good fit, possibly due to lack of volatile 
clusters that are heteroskedastic.

 3. 	 The Random Walk Model is not so successful as compared to 
the other fits that it shows in the other two cases. The reason is 
that this time series being highly fluctuating, has large deviations 
between the time points and cannot be harnessed in terms of 
noise that are accounted by the Random Walk model. The R2 for 
this model is 45.69% (marked as ## in Table 2).

For the PV death data, in all the models both JB and ADF tests 
generate non-significant p-values (Table 1) indicating that we are 
unable to reject the null hypotheses. We conclude that for our model-
fits, the residuals are normal for all the models and the unit root is 
stationary for all predicted series of the data. In summary, in this 
case we observe that all models show promising result, except slightly 
low fitting of the random walk model. This happens due to failure in 
capturing the larger deviations between time differences, whereas the 
other models provide a fairly good fit.

Here we must mention that the paucity of available data is one of 
the major factors, especially the data set of deaths is very short (just 
12 time points), which may run the risk of mis-fitting or over-fitting. 
But since we have used models which involve several parameters, we 
have used the Akaike criterion to sense over-fitting and have chosen 
the best available model with highest information and least number 
of possible parameters. With larger data sets and careful parameter 
choices one may be able to achieve even better results in terms of 
predicting the disease prevalence.

Forecasting and the best-fit model

To obtain the predictions based on the models that we applied to 
each of the data sets, we calculated the next few forecasted values from 
each time series models (Table 3) and compared with the available 
data. This clearly implies that on the basis of the given data, in a short 
forecasting horizon the models that we have chosen are very efficient 
in forecasting the future values. For all the models the predicted 
values are inside the 95% confidence limits of the observed values 
(shown within brackets in Table 3). It is worthy to note that in our 
study, the good fit of models are observed due to the fact that all the 
models used here have the inherent property to track the evolution of 
the previous values and predict the next. This conditional dependence 
is very obvious from the model formulae. Thus the models we chose 
may be adopted for modeling and forecasting purpose under suitable 
conditions.

Predicting large number of points for the PV deaths data set is 
actually unviable because in that case we run the risk of mis-fitting 
the data and basing a large number of predictions on a very short 
history. We therefore predicted only two time points for this data and 
compared it with respect to the observed values, which were available 
also only for two time points. But we have forecasted few more points 
for the longer time series data set of SPR (six points) and validated 
against the available observed data. In order to decide which model 
provides the best projections in the chosen horizon and to reinstate 
the suitability of the models for each of the data sets, we obtain the 
Akaike’s Information Criterion for each of the model forecasts (Table 
4).

Table 2: Statistical summary for fitted time series models.

Models
Epidemiological data

SPR PV deaths

ARIMA

Model chosen ARIMA (0,0,6) ARIMA (2,2,4)

Model R2 52.22% $$ 86.24%

GARCH

Model chosen ARCH (0,1) ARCH (0,1)

Model R2 34.27% *# 51.5% **

Random Walk

Model R2 98.60% 45.69% ##

(different markers - $$, *#, **, ##” - are explained in the text for SPR and PV 
deaths)
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For the Slide Positivity Rate data we observe that the AIC 
values (Table 4) suggest Random Walk model as the best model 
to provide better forecast. The ARCH model also provides a good 
approximation since there exists volatility clusters in the data. 
However due to parameter redundancy, the ARIMA models prove a 
failure, conforming the results observed from model fits. Moreover, 
the Plasmodium vivax deaths data also indicates that the Random 
Walk is the best model for this and ARCH model provides a very 
close second best fit (Table 4). ARIMA model fails to qualify the 
criterion, opposite to the result observed in the model fit. 

Failure of a continuous time domain model in 
epidemiological data

To broaden our analysis apart from the three standard discrete 
time models, we tested the applicability of a continuous time domain 
model to see the differences in the model features in contrast to 
the discrete time behavior. For this purpose, we have chosen the 
Geometric Brownian Motion, which is the exponential form of the 
Brownian motion model and is the continuous analog of random 
walk model. This is a well-known model among the financial 
economists and has wide application since early twentieth century 
in asset price modeling [62]. We observe that it does not yield good 
results for the epidemiological data sets (Figure 4a and 4b), probably 
due to the fact that it is a diffusion process in continuous time domain 
with continuous state space. The R2 and adjusted R2 for SPR data set 

are 0.2% and -5.86% respectively and that for the PV deaths data set 
are 60.07% and 48.66% respectively.

A close observation to Figure 4(b) reveals that the fitted model 
and the observed data series fall apart and shows negatively correlated 
movement between the two series, which is also suggested by the R2 
values. However, from Figure 4 it is very clear that the model is not 
suitable for modeling epidemiological data, as demonstrated by our 
case data.

Discussion
Application of different Time Series model to analyse and predict 

financial data as well as epidemiological data is of long interest to 
researchers, even with existence of similarities and dissimilarities 
between the two data types. In both financial and epidemiological 
modeling, we are mainly faced with two types of times series data 
sets, broadly, stationary and non-stationary. The ARMA models are 
mainly used to model stationary time series data when the variance 
does not differ much between groups [41], whereas the ARCH class 
of models and their extension, the GARCH classes are used in data 
sets where volatility clusters are prevalent [38]. However in case the 
data exhibits non-stationarity, an extra parameter is added to ARMA 
to form an ARIMA model. Further, if we have a time series with noisy 
and short fluctuations such that it is difficult to differentiate between 
the trend and seasonal components, then we cannot adopt models of 
these types and use a Markov process, with an auto regressive term 
and an adjusted random noise component, widely known as Random 
Walk model [47,63].

Table 3: Predictions and comparisons of model’s forecasting power for two types of malaria data.

Data sets
Observed Model Predictions

(available data) ARIMA GARCH Random Walk

SPR 9.0 (8.21,9.84) 7.69 8.58 8.52

(predictions for next 6 points) 9.5 (8.63,10.30) 8.06 8.58 8.86

9.1 (8.29,9.93) 9.09 8.92 8.58

7.1 (6.36,7.84) 8.92 8.65 6.99

7.0 (6.25,7.72) 7.46 7.33 6.9

** 7.31 7.46 ##

PV deaths 1055 (271.05,1785.83) 746.31 1046.01 1009.27

(predictions for next 2 points) 841 (202.28,1555.48) 848.23 1092.61 1053.4

** No data available for validation of the prediction

## Prediction for this model is conditional on previous value

N.B. Values enclosed in braces are the 95% confidence limits for the best fitted 
model

Table 4: Akaike’s Information Criterion (Â) for the model fits.

Data Fitted Models

SPR ARIMA (0,0,6) GARCH (0,1) Random Walk
Sum of 

Squares 2083.05 2096.27 1974.51

Â 164.09 150.68 148.53

PV Deaths ARIMA (2,2,4) GARCH (0,1) Random Walk
Sum of 

Squares 10855765.24 11074350.19 10902838.41

Â 206.58 170.16 169.97

Figure 4: Simulated time series of the Geometrical Brownian motion for (a) 
SPR and (b) PV deaths.
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The major objective of our work is to demonstrate that the models 
discussed above can be used successfully to analyse epidemiological 
data and also derive good forecast of disease prevalence. As is evident 
from the above study that the models that we have chosen are tailor 
made for the purpose of modeling stock prices as all the models 
namely the ARIMA family, the GARCH family, the Random Walk 
and the Geometric Brownian Motion (GBM) provide excellent fits 
for the stock price data set (Supplementary Information). However, 
the interesting observation is that these models also provide good fits 
when modeling Slide Positivity Rates and Plasmodium vivax deaths 
data with the only exception of GBM. 

We observe from Figure 3 and Table 2, that the ARIMA class of 
models is always a good fit for the epidemiological data sets, which 
are mostly seasonal in nature. However, the ARCH model provides 
a fairly good estimation for the malaria data sets as well, though 
the fits are not highly encouraging and is the second best model 
according to the AIC metric for the three models taken together. 
This encourages us to believe that when we have stronger data sets 
with more durational gaps, we can use this model with high degree 
of confidence for modeling and forecasting of epidemiological time 
series data. Significantly, the Random Walk model provides a good 
model for the SPR data, as the fluctuations in the data set are very 
short and volatile. However, it seems to fail in case of data sets with 
longer seasonality and shorter length, as is the case with Plasmodium 
vivax deaths data. Even though the AIC metric (Table 4) shows that 
in this case also one can choose Random Walk model in contrast 
to other models, the large number of parameters reduce the model 
stability. We have shown that the models that we have chosen provide 
excellent fits and are good tools for forecasting epidemiological data 
in a short horizon. We have also shown in our study that with the 
use of these models one can predict the disease incidence and/or 
prevalence rates. For SPR we predicted 4 future time points and for 
the Plasmodium vivax deaths data we predicted 2 time points and 
observed that the Random Walk model gives excellent predictions. 
This forecasting can also be validated if the data is available (as we 
have shown for the SPR data set with our models). Depending on 
the nature, length and complexity of the epidemiological time series 
data one can choose appropriate models from these major classes and 
generate predictions accordingly.

In this study, we not only compared between data sets from 
financial and epidemiological background but also considered the 
applicability of models from different classes to each of these data so 
as to form a wider applicable ground for common class of models 
to compare, contrast and understand, and most importantly predict 
data series of different nature. The predicting and forecasting power 
exhibited by the chosen models will help researchers and public 
health professionals to develop disease control programmes and early 
warning systems for a disease prevalence forecast, specifically for 
malaria.
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