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Introduction
An important issue in planning any study that will require inference for a correlation coefficient 

is the determination of the appropriate sample size to use. The usual procedure of choosing n based 
on the power of the test of the hypothesis that the population correlation is zero often results in 
correlations of little practical importance being declared "significant," and confidence intervals that 
are too wide to be of any practical use. In this article, alternative methods for determining sample 
size are presented and compared to the "usual" procedure.

Example
Suppose that one is planning a study involving bivariate normal data in which statistical 

inference is to be performed for a Pearson Correlation Coefficient (PCC) and that the consensus of 
previous research in the area is that the population correlation is no smaller than 0.40. Reference 
to sample size tables for the "usual" t-test of the correlation coefficient [1] indicates that a sample of 
n= 46 will yield 80% power for detecting departures from zero as small as ρ = 0.40 when α = 0.05 
(Table 1).

For the sake of argument, suppose that the value of the sample PCC (denoted here after by r) 
from a subsequent sample of 46 is exactly equal to 0.40. This yields a 2-tailed p-value of 0.006 and a 
95% confidence interval of (0.12, 0.62). Although these results indicate statistical significance, their 
practical significance is unclear because the confidence interval is too wide to draw any reasonable 
conclusion about the true magnitude of ρ. For example, Hebel and McCarter [2] classify 0.0 ≤ |ρ | 
≤ 0.2 as "negligible," 0.2 < | ρ | < 0.5 as "weak," 0.5 ≤ | ρ | ≤ 0.8 as "moderate," and 0.8 < | ρ | ≤ 1.0 as 
"strong." Thus, using their classification scheme, all we can conclude from a confidence interval of 
(0.12, 0.62) is that ρ is somewhere between "negligible" and "moderate" (inclusive). If one prefers to 
interpret correlation coefficients in terms of effect size, Cohen [1] suggests that one classify | ρ | = 0.1 
as a "small" effect size, | ρ | = 0.3 as "medium," and | ρ | = 0.5 as "large." Using this scheme, all that a 
confidence interval of (0.12, 0.62) tells us is that the effect size of | ρ | is somewhere between "small" 
and "large" (inclusive).

One of the alternative approaches proposed in this article is to select n on the basis of the desired 
width of the resulting Confidence Interval (C.I.) for ρ rather than the power of the test of H0: ρ= 0. 
For the aforementioned example, Table 2 indicates that a sample size of n = 273 is required to yield 
a 95% C.I. of width 0.20 using a "planning value" of r = 0.40. Assuming that a value of exactly r = 
0.40 is obtained from a subsequent sample of 273, the resulting p-value is <0.001 and the 95% C.I. 
is (0.30, 0.50). While this result also indicates statistical significance, the C.I. is sufficiently narrow 
to indicate that the population correlation between the two variables is "weak" according to the 
classification scheme of Hebel and McCarter.

Background
The difficulty described in the previous section arises primarily from the fact that H0: ρ= 0 is 

not the appropriate null hypothesis to test in most situations that require inference for a single 
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correlation coefficient. It is usually of little interest to determine if 
there is sufficient evidence to conclude that ρ = 0. (An exception would 
be a study in which the primary null hypothesis is that variables X and 
Y are independent and X and Y can be assumed to have a bivariate 
normal distribution.) Most investigators would not proceed with a 
study unless they had sufficient reason to believe that the population 
correlation is non-zero, even though no formal statistical hypothesis 
test had ever been performed. Other authors agree with our assertion: 
Strike [4] argues that the test of ρ = 0 is "utterly redundant" and 
Shoukri [5] asserts that a test of Ho: ρ = 0 is "meaningless."

Another problem with testing Ho: ρ = 0 is that the usual t-test 
often rejects the null hypothesis for small values of the sample 
correlation, even when the sample size is small to moderate (Table 
3). For example, when n = 30, a sample value of r = 0.361 ("weak," 
according to [2]) yields p = 0.05 (but note the extremely wide C.I. of 
(0.001, 0.638)). For a sample of n = 100, a correlation of only 0.197 
yields p = 0.05. This correlation is "negligible" according to [2] and 
would be classified as a small effect size by Cohen [1]. Since the 
width of a C.I. for ρ varies inversely with both the sample size and 

the magnitude of r, the combination of small r and small to moderate 
n often yields C.I.'s that are too wide to be of any practical use, even 
though p < 0.05.

A further concern is that the sample sizes required to yield 80% 
or 90% power for testing Ho: ρ = 0 are generally too small to yield 
C.I.'s of a usable width, even when the sample correlation is large 
(Table 1). For example, a sample of only n = 6 is required to achieve 
80% power against the alternative value ρ1 = 0.90. Assuming that the 
value of r from a subsequent sample of n = 6 is exactly equal to 0.9 
yields p = 0.015 and a 95% C.I. of (0.33, 0.99) (Table 1), which merely 
indicates that ρ is somewhere between "weak" and "strong" (inclusive) 
according to [2]. If Cohen's Classification based on effect size is used, 
this interval only tells us that the effect size of ρ is at least "medium" 
in magnitude [1].

Alternative Approaches
One alternative to testing Ho: ρ = 0 is to specify another null value. 

Sometimes one is interested primarily in determining if the sample 
results are consistent with some relevant non-zero hypothesized 
value; for example, the smallest value of the correlation that would 
be considered to be clinically meaningful. Such a value may be 
determined from examining previously published research in the 
area, from published guidelines or recommendations, from the 
clinical judgment and expertise of the research team, etc. Applying 
the Fisher z-transform to r,

yields a new random variable that has an approximate normal 
distribution with mean 0 and variance 1/(n - 3). This result can be 
used to derive a test statistic for testing H0: ρ= ρ0:

					   

	           					                (1)

Table 3: Confidence intervals corresponding to minimum value of r required to 
yield p ≤ 0.05 when testing H0: ρ= 0 (2-tailed test).

Sample Size Minimum r Yielding p ≤ 0.05 95% C.I.(ρ) Width of C.I./2

10 0.632 (0.004, 0.903) 0.45

20 0.444 (0.002, 0.741) 0.37

30 0.361 (0.001, 0.638) 0.319

40 0.312 (0.001, 0.568) 0.284

50 0.279 (0.001, 0.517) 0.259

60 0.255 (0.001, 0.478) 0.239

70 0.235 (0.000, 0.445) 0.223

80 0.22 (0.000, 0.419) 0.21

90 0.208 (0.001, 0.398) 0.199

100 0.197 (0.001, 0.379) 0.19

120 0.18 (0.001, 0.348) 0.174

150 0.161 (0.001, 0.313) 0.157

180 0.147 (0.001, 0.287) 0.144

200 0.139 (0.000, 0.272) 0.136
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Table 1: Sample size required to achieve specified power (1 -β) for detecting ρ = 
ρ1 when testing H0: ρ=0 using α = 0.05 (2-tailed test).

ρ1
Sample Size 95% CI if r=ρ1 2-tailed ρ-value if r=ρ1

β=0.10 β=0.20 β=0.10 β=0.20 β=0.10 β=0.20

0.1 1047 783 (0.04,0.16) (0.03,0.17) 0.001 0.005

0.2 259 194 (0.08,0.31) (0.06,0.33) 0.001 0.005

0.3 113 85 (0.12,0.46) (0.09,0.48) 0.001 0.005

0.4 62 46 (0.17,0.59) (0.12,0.62) 0.001 0.006

0.5 37 28 (0.21,0.71) (0.16,0.74) 0.002 0.007

0.6 24 18 (0.26,0.81) (0.18,0.83) 0.002 0.009

0.7 16 12 (0.31,0.89) (0.21,0.91) 0.003 0.011

0.8 11 9 (0.38,0.95) (0.29,0.96) 0.003 0.01

0.9 7 6 (0.46,0.99) (0.33,0.99) 0.006 0.015

The sample sizes in this table were obtained from Cohen [1].

Table 2: Minimum Sample Size Required to Yield a 95% C.I.(ρ) of Specified 
Width*.

r
Width of 95% CI(r)

0.1 0.2 0.3 0.4

0.1 1507 378† 168† 95†

0.2 1417 355 159 90†

0.3 1274 320 143 81

0.4 1086 273 123 70

0.5 867 219 99 57

0.6 633 161 74 43

0.7 404 105 49 30

0.8 205 56 28 18

0.9 63 21 14 11

*The sample sizes in this table were obtained using the methods 
of Bonett and Wright [3].

†Confidence intervals based on these values of n and r are 
guaranteed to contain ρ = 0, resulting in a failure to reject H0: ρ= 0.
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where n is the sample size, z(r) is the Fisher z-transform applied 
to the sample value of the PCC, and z (ρ0 ) is the Fisher z-transform 
applied to the hypothesized value of the PCC, which can be any ρ0 
such that | ρ0 | < 1. (Most commonly, ρ0 = 0, in which case z (ρ0) =z 
(0) =0.) The value of z0 in (1) is then evaluated against the standard 
normal distribution to obtain an approximate p-value.

In some instances, there may be no non-zero null value ρ0 that is 
of primary interest. In this case, one could use the cutoffs advocated 
by Hebel and McCarter [2] (or other cutoffs that make sense in the 
context of the applied problem) to get a sense of the magnitude of 
the correlation in the population under study. For example, if it is 
known that ρ is positive, then one could test H0: ρ≤ 0.8 to determine 
if the population correlation is "strong" or H0: ρ ≤ 0.2 to determine 
if the population correlation is "non-negligible" using the Hebel and 
McCarter criteria. Tables similar to Table 1 could then be constructed 
for these values of ρ0. Alternatively, using the same notation as in 
Table 1, the following formula could be used for a 1-tailed test:

						                  (2)

where zr denotes the upper γ -percentage point of the standard 
normal and z(ρ) denotes the Fisher z-transform of ρ.

Consider the example discussed previously in which one wishes 
to determine the appropriate sample size to use for a future study in 
which the PCC is of primary interest and there is reason to believe 
that ρ is positive and no smaller than 0.40. One approach would be 
to test H0: ρ≤0.2; if this hypothesis is rejected, then one can conclude 
that the population correlation is non-negligible according to [2]. A 
calculation using Equation (2) indicates that samples of 130 and 179 
would be required to achieve 80% and 90% power, respectively, to 
detect ρ1 = 0.40 using an upper-tailed test.

Suppose that a subsequent sample of n = 130 yielded a sample 
value of exactly r = 0.40; the corresponding upper-tailed p-value for 
the test of H0: ρ ≤ 0.2 is 0.006 and the one-sided 95% C.I. is (0.27, 1.00). 
Thus, one can conclude that the population correlation is significantly 
greater than 0.2 (p < 0.001) and can be classified as "non-negligible” 
according to [2]. In the example in which n = 30 and r = 0.361, the 
p-value for the test of H0: ρ < 0.2 is 0.181, insufficient evidence to 
conclude that the population correlation is "non-negligible," despite 
the fact that the test of H0: ρ=0 indicated that the result is “significant.”

Another alternative is to focus one's attention on confidence 
interval estimation of the population correlation (derived using the 
Fisher z-transform of r) instead of the test of a particular hypothesized 
null value. This approach is consistent with the emphasis placed 
on confidence interval estimation over hypothesis testing by many 
authors [6-8] Table 2 can be used to determine the sample size 
required to obtain a 95% C.I. for ρ of a desired width. (This approach 
was illustrated in a previous section).

Discussion
The purpose of this article is to illustrate some of the practical 

problems encountered when attempting to determine the appropriate 
sample size to use when a proposed study requires inference for a 
single correlation coefficient. The argument is made that H0 : ρ= 0 

is usually not the appropriate null hypothesis to test and that using 
sample sizes that yield a desirable level of power (say, 80% or 90%) 
for this test can result in C.I.'s that are so wide that they provide 
very little useful information about the magnitude of the population 
correlation. Two alternative approaches were proposed: (1) testing 
null values other than ρ0 = 0 and (2) determining the sample size so as 
to achieve a certain level of precision of the estimate of ρ, as measured 
by the width of the resulting C.I. Depending on the purpose of the 
statistical analysis, either or both of these approaches could be a 
useful alternative to the "usual" method of determining sample size. 
However, it must be noted that the sample sizes required for either 
of these approaches often will be much larger than those required 
to achieve acceptable power when testing H0: ρ= 0 . In the example 
considered in a previous section, the “usual” approach based on 
testing H0: ρ= 0 yielded a sample of size n = 46, the approach based 
on testing H0: ρ ≤ 0.2 yielded n = 163 and the “C.I.” approach yielded 
n = 273.

The alternative approaches described in this article could also be 
applied if one were performing inference for the Spearman Correlation 
Coefficient (SCC) or the Kendall Coefficient of Concordance (KCC). 
For example, using the same notation as in Equation (2) for a one-
tailed test of the KCC, the "z-transform" developed by Fieller, Hartley, 
and Pearson [9] for the KCC yields the sample size formula.

Where τb0 and τb1 are the null and alternative values of the KCC, 
respectively (τb1 > τb0). For the SCC, the Fieller, Hartley and Pearson 
z-transform yields.

					      	               (3)

 where ρs0 and ρs1 are the null and alternative hypothesized values 
of the SCC, respectively (ρs1 >ρs0). Using the improved z-transform 
of the SCC proposed by Bonett and Wright [3], the formula in (3) 
becomes

						                 (4)

Bonett and Wright recommend that (4) be used for | ρs1 | < 0.95 
and that (3) be used if | ρs1 | ≥0.95.

We are not necessarily advocating the use of the Hebel and 
McCarter criteria [2] for interpreting the magnitude of correlation 
coefficients. While we have found these to be useful in our own 
exploratory analyses of biomedical data, they may not be appropriate 
in other areas of investigation. However, we encourage the 
development and use of such guidelines because we feel that they can 
greatly enhance one's ability to interpret and communicate results 
to non-statisticians (e.g., see the guidelines proposed by Landis and 
Koch [10] for interpreting agreement coefficients. And the guidelines 
proposed by Fleiss et al. [11] for interpreting intra-class correlation 
coefficients).
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Simply reporting that a correlation is "significant" just because 
the p-value for the test of H0 : ρ= 0 is less than 0.05 is generally not 
sufficient.
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