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Introduction
The development of continuous numerical techniques for solving heat conduction equation 

in science and engineering subject to initial and boundary conditions is a subject of considerable 
interest. In this paper, we develop a new continuous numerical method which is based on 
interpolation and collocation at some point along the coordinates [1-17]. To do this we let ( )txU ,  
represents the temperature at any point in the large flat steel plate. Heat is flowing from one end to 
another under the influence of the temperature gradient xU ∂∂ . To make a balance of the rate of 
heat flow in and out of the medium, we consider R  for thermal conductivity of the steel, C  the heat 
capacity which we assume constants and ρ  the density. Heat flow in the plate is given by

                                                                   (1.0)

Where A  is the cross section of the flat plate?

Our new method strives to provide solutions to the heat flow eqn. (1.0). 

Solution Method

To set up the solution method we select an integer N  such that 0>N . We subdivide the interval 
Xx ≤≤0  into N  equal subintervals with mesh points along space axis given by

 where                 Similarly, we reverse the roles of x  and t  and we select  another integer  M such 
that .0>M We  also subdivide the interval Tt ≤≤0  into M  equal  subintervals with mesh points 
along time axis given by 
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along space and time axes respectively. Here, we seek for the approximate solution ( )txU ,  to ( )txU ,  
of the form 
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Over 0,0 >> kh  mesh sizes, such that MjNi tttxxx <<<<=<<<<= ......0,......0 00 . We 
denote p  to be the sum of interpolation points along the space and time coordinates respectively. 
That is ,bgp += where g  is the number of interpolation points along the space coordinate, while b
is the number of interpolation points along the time coordinate. The bases functions ,,, rrr sq ψ

1,...,1,0 −= pr are the Taylor’s, Legendre’s and chebyshev’s polynomials which are known, ra  are 
the constants to be determined. The interpolation values jhiji UU ,1, ,..., −+  are assumed to have been 
determined from previous steps, while the method seeks to obtain 

jhiU ,+  
(Odekunle, 2008). Applying 

the above interpolation conditions on 

eqn. (2.0) we obtain
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Abstract

A new continuous numerical approach based on the approximation of polynomials is here proposed for 
solving the equation arising from heat transfer along a large flat steel plate subject to initial and boundary 
conditions. The method results from discretization of the heat equation which leads to the production of a 
system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate 
solutions.
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Cramer’s rule, 

eqn. (2.1) becomes 
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where 
ββ

β 1,12
−=
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−+= ivgiz  and 1−W exist Odekunle, 2008).

Hence, from eqn. (2.2), we obtain

., 1−== WFa ϖϖ                                           (2.3)

The vector ( )Tpaaa 10 ,..., −= is now determined in terms of 

known parameters in Fϖ .  If 1+rϖ  is the ( )thr 1+  row of  ,ϖ  then 

Fa rr 1+= ϖ                                                                                                                          (2.4)

Eqn. (2.4) determines the values of ra explicitly.

We take first and second derivatives of eqn. (2.0) with respect to x
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Substituting eqn. (2.4) into eqn. (2.5) we obtain
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We then reverse the roles of x and t in eqn. (2.1) and arbitrarily 
set 
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Hence, from eqn. (2.7) we obtain

 ., 1−== YLELa                                         (2.8)

The vector ( )Tpaaa 20 ,..., −= is now determined in terms of 
known parameters in EL . 

 If 1+rL  is the ( )thr 1+  row of  ,L  then 

ELa rr 1+=                               (2.9)

Also, eqn. (2.9) determines the values of ra clearly. Taking the 
first derivatives of

 eqn. (2.0) with respect to t  we obtain

                                                    (2.10) 

 
Substituting eqn. (2.9) into eqn. (2.10) we obtain
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But by eqn. (1.0) it is obvious that eqn. (2.11) is equal to eqn. (2.6), 
therefore, 

                     (2.12)

Collocating eqn. (2.12) at ixx = and jtt =  produces a new 
continuous numerical scheme that solves eqn. (1.0) explicitly.

Numerical examples
In this section, we will test the numerical accuracy of the new 

method by using the new scheme to solve two examples. That is, we 
compute approximate solutions of equation. (1.0) at each time level. 
To achieve this, we truncate the polynomials after second degree, 
and the average is used as the basis function in the computation. The 
resultant scheme is used to solve the following two problems:

Example 1 Benner and Mena [18-27]

A large flat steel plate is 4cm thick. If the initial temperatures Co0  
within the plate are given as a function of the distance from one face, 
by the equations

( ) 42,4100,20100 ≤≤−=≤≤= xforxUxforxU  
Find the temperatures as a function of x  and t  if both faces are 
maintained at C00 . Where k  for steel is              . 

By simplification eqn. (2.0) becomes t
Uc

x
UA

∂
∂

=
∂
∂ ρ2

2 . To solve this

 equation, we subdivide the total thickness into an integral number of 
spaces. Let us use 

Taking 170,4 == αβ   implies that 
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Table 1: Calculated temperatures.

t Χ=0 Χ=0.25 Χ=0.50 Χ=0.75 Χ=1.0 Χ=1.25

0.0 0.0 25 50 75 100 75

0.26 0.0 25 50 75 93.75 75

0.412 0.0 25 50 74.22 89.06 74.22

0.619 0.0 25 49.90 73.05 85.35 73.05

0.825 0.0 24.99 9.68 71.69 82.28 71.69

1.031 0.0 24.95 49.35 70.26 79.62 70.26

Table 2: Calculated temperatures.

t X=0 X=0.5 X=1.0 X=1.5 X=2.0 X=2.5 X=3.0 X=3.50 X=4

0 0 50 100 150 200 150 100 50 0

X=22.44 0 50 100 150 187.5 150 100 50 0

X=44.88 0 50 100 148.44 178.13 148.44 100 50 0

X=67.32 0 50 100 146.1 170.71 146.1 100 50 0

X=89.76 0 50 99.51 143.41 164.56 143.41 99.51 50 0

X=112.20 0 49.94 99.81 140.57 159.27 140.57 99.81 49.94 0

X=134.64 0 49.81 97.92 137.69 154.6 137.69 97.92 49.81 0

points along space coordinate and one interpolation point along time 
coordinate. Implies  3,1,2 =⇒== pbg  and for    
     

     implies that

170
1,0

4
1,0,

4
1

=−= kandh , then the calculated temperatures 
are as

shown in table 1.

Example 2 (Benner and Mena [5] )

A large flat steel plate is 2cm thick. If the initial temperatures Co0  
within the plate are given as a function of the distance from one face, 
by the equations

     

Find the temperatures as a function of x  and t  if both faces are 
maintained at C00 . Where k  for steel is

Solution: we subdivide the total thickness into an integral number 
of spaces. Let us use 

Taking              implies that
  

       

We take two interpolation points along space coordinate and 
one interpolation point along time coordinate. This Implies

3,1,2 === pandbg . and for 
                                        then the calculated temperatures are as 

shown in table 2. 
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