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Introduction
The term BigData refers to the collection of large, complex, distributed data at an extremely fast 

rate; its shorthand formula is the “5Vs”: volume, variety, velocity, veracity and value [1,2]. In each 
of its attributes, Big Data has high potential for unlocking new sources of economic value, providing 
fresh insights into scientific discoveries, and assisting in policy making [3]. However, Big Data is not 
practically useful until it can be aggregated and integrated in a manner that computer systems can 
use to generate knowledge. As data originally reside in individual silos, or across multiple domains 
that are not integrated, each source of knowledge serves a very specific localized purpose in the 
system or else is comprised of data entries for viewing only. However, the combination of data silos 
across data warehouses can provide new insights into important problems. Particularly, correlation 
of data from multiple datasets can result in the identification of individual events and phenomena, 
as well as in the creation of profiles that can be used to track activities proactively.

The application of Big Data to healthcare is different from its application in other areas, such as 
social networks or business, in that healthcare data includes structured Electronic Health Records 
(EHRs), coded data from such sources as the International Statistical Classification of Diseases 
(ICD) and the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT), semi-
structured data (e.g. HL7 messages), unstructured clinical notes, medical images (e.g. MRI, X-rays), 
genetic and laboratory data and other types of data (e.g. patient registration, public health and 
mental health data). Huge volumes of very heterogeneous raw data are generated by a variety of 
health information systems, such as EHR, Computerized Physician Order Entry (CPOE), Picture 
Archiving and Communication Systems (PACS), Clinical Decision Support Systems (CDSS) and 
Laboratory Information Systems (LIS). These system types are used in many distributed healthcare 
settings, such as hospitals, clinics, laboratories, and physician’s offices. Several published studies 
have asserted that if Big Data in healthcare is managed well, it can drastically improve patient care 
and reduce costs [3-6]. A McKinsey Global Institute study suggests, “If US healthcare were to use 
Big Data creatively and effectively to drive efficiency and quality, the sector could create more than 
$300 billion in value every year” [7]. Shah and Tenenhaum [8] believe that Big Data-driven research 
will enable the discovery of new treatments for diseases. Garrison [9] also proclaims that Big Data 
will benefit population health and improve decision making.

While the potential value of Big Data in healthcare has been widely discussed, real-world 
applications and even simulated applications have rarely been attempted. Applications involving 
data from hospital systems have seldom been implemented. In our study, we designed and 
implemented a framework using Big Data technologies for supporting Big Data Analytics (BDA) in 
healthcare. In that framework, emulated patient data was distributed using the Hadoop Distributed 
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Abstract

The study objective is to establish an interactive Big Data Platform Analytics (BDA) platform with Hadoop/
MapReduce technologies distributed over HBase (key-value NoSQL database storage) and to generate 
hospitalization metadata on the platform. Performance tests retrieved results from simulated patient records with 
Apache tools in Hadoop’s ecosystem. At optimized iteration, the Hadoop distributed file system (HDFS) ingestion 
with HBase exhibited sustained database integrity over hundreds of iterations; however, the platform required a 
month to complete its bulk loading via MapReduce to HBase and validate queries required a month. To generate 
HBase datafiles, the framework took a week for one billion (10TB) files and a month for three billion (30TB) files. 
Inconsistencies of MapReduce limited the capacity to generate/replicate data efficiently. Dependencies among 
the data elements system could be expressed via “family” primary keys set in code via Apache Phoenix as 
database generator. Modeling a hospital system based on a patient encounter-centric database was very difficult 
because data profiles were fully representative of complex relationships. Apache Spark and Apache Drill showed 
high performance. Recommendations regarding key-value storage should be considered when analyzing large 
volumes of healthcare data securely.
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File System (HDFS) to simulate the interactive usability of extremely 
large volumes of data, representing billions of patient encounters 
across multiple hospitals. To achieve this scale, three to nine billion 
patient records were constructed and cross-referenced with data 
profiles of metadata in existing data warehouses at the Vancouver 
Island Health Authority (VIHA), headquartered in Victoria, British 
Columbia, Canada. The resulting data set was then validated via 
workflow to retrieve results from patient queries. In general terms, 
the simulation was a proof-of-concept implementation of the use of 
real patient data on a BDA platform.

Literature Review
Challenges in Big Data Analytics

BDA is the process of extracting knowledge or data mining 
from sets of Big Data [10]. Wang et al. [11] describe the extraction 
of useful knowledge from Big Data in terms of a processing pipeline 
that transfers, stores, and analyses data for whole systems. According 
to Kuo et al. [12], the process of achieving full Big Data utilization 
involves the following five distinct configuration stages, each of which 
presents specific challenges:

Data aggregation: Copying/transferring data to a storage drive is 
the most commonly used method of aggregating and migrating large 
quantities of data, but its efficiency declines as volume increases. Big 
Data usually involves multiple organizations, geographic locations 
and multiple devices to aggregate over a system; typically, therefore, 
generating large datasets by replication from production should 
minimize ongoing consumption of network services and database 
resources, enabling the production system to render the system in 
operation. Further, exchange of data between groups and databases 
is very difficult to coordinate; hence, a secondary database, external 
to production systems, is usually created. Another approach to 
aggregation is to transfer data over a network. However, transferring, 
aggregating and indexing vast amounts of data require a significant 
bandwidth over a long duration. A third option is to replicate data 
from the sources and generate it iteratively across instances and 
multiple nodes, as Hadoop does when replicating file blocks and 
storing them via distributed batch processes [13-15].

Data maintenance: Since Big Data, by definition, consists of large 
volumes of information, it is very difficult to store and maintain for 
ongoing queries, especially with continuous batch processing of data. 
Moreover, the necessary investment of time and cost can prohibit 
small organizations or departments from managing large amounts 
of data. Another challenge in healthcare is that real patient data, 
metadata and data profiles need to be constantly updated; otherwise, 
the analytics is rendered useless. Many solutions to this problem 
are available, including cloud computing [16], grid computing [17], 
NoSQL/NewSQL and other storage systems (e.g., MongoDB, HBase, 
Voldemort DB, Cassandra and the Hadoop Distributed File System) 
and Google’s BigTable [18-20]).

Legality and ethics are major issues in data maintenance. Security, 
confidentiality and privacy mandated by legislation and strict 
regulations are key components of data governance, which holds 
those responsible for data maintenance accountable. For example, 
the Health Insurance Portability and Accountability Act require the 
removal of 18 types of information that could identify patients. Privacy 
concerns can be addressed by applying appropriate software and 

database technologies, such as key-value storage services; however, 
doing so requires advanced configuration and technical knowledge. 
For example, Pattuk et al. [21] have proposed a framework for secure 
Big Data management involving an HBase database called Big Secret, 
which securely outsources and processes encrypted data over public 
key-value stores. Derbeko et al. [22] provide a comprehensive review 
of existing security and privacy protocols for distributed processing 
of large-scale data in a cloud computing environment. Most hospitals 
house their data in server racks in a highly secure building and 
vendors commonly are not allowed to use cloud services.

Data integration: Processes of data integration and interoperability 
involve combining (and perhaps transforming) data in an appropriate 
format for analysis. Since Big Data in healthcare is extremely large, 
distributed at different locations, unstructured and heterogeneous, 
data integration is very challenging [16,23]. Numerous solutions 
have been proposed for raw Big Data integration [24-28]. These 
methods are problem-oriented; in other words, they are applied to 
specific datasets or aggregates. Generic approaches to the integration 
of unstructured data are very few.

Data analysis: BDA involves the programming of analytic 
algorithms. However, with increasing complexity, computing time 
increases dramatically even with small increases in data volume. For 
example, in the case of Bayesian Networks, which are commonly 
used algorithms for modeling knowledge in computational biology 
and bioinformatics, the computing time required to find the best 
network increases exponentially as the number of records rises [29]. 
Several days may be required even for simple data analysis, and when 
databases are very large and SQL-like “joins” are executed, it may 
take months to obtain a result. Consequently, many studies suggest 
parallelizing computing models to enhance performance and reduce 
the computational intensity of analysis [30-37].

Pattern interpretation: Knowledge representation is an absolute 
necessity for BDA in healthcare. BDA is of little value if decision-
makers do not understand the patterns of information that may 
yield a discovery. However, given the complex nature of Big Data, 
representations of trends and individualized results will not be 
immediately comprehensible to non-experts attempting to use a 
BDA platform. Many people intuitively believe that bigger data 
means better information. Agile data science can offer accurate 
data visualizations but cannot protect users from inaccuracies and 
faulty assumptions. Reporters are often fooled into thinking that 
correlations are significant with outbeing aware of nuances in the 
data, its quality, and its structure.

Big Data Technologies and Platform Services

Big Data technologies fall into four main categories: High-
Performance Computing (HPC) technologies, storage technologies, 
resource/workflow allocators, and insertion or ingestion processes 
[36]. An HPC system is usually the backbone of the technology 
framework (e.g., IBM’s Watson). HPC can consist of a distributed 
system, grid computing, and a Graphical Processing Unit (GPU). 
In a distributed system, several computers (computing nodes) can 
participate in processing large volumes and varieties of structured, 
semi-structured, and/or unstructured data. A grid computing system 
is a distributed system employing resources over multiple locations 
(e.g., CPUs, storage of computing systems across a network, etc.), 
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which enables processes and configurations to be applied to any task 
in a flexible, continuous and inexpensive manner. GPU computing 
is well-adapted for throughput-oriented workload problems, like 
batch fills at large volume. Parallel data processing can be handled 
by GPU clusters. However, “GPUs have difficulty communicating 
over a network, cannot handle virtualization of resources and using a 
cluster of GPUs to implement a commonly used programming model 
(namely, MapReduce) presents some challenges” [36].

In the quest for the most efficient platform, distributed systems 
appear to be the best choice of technologies for the near future. 
Therefore, it is important to understand the nature of a distributed 
system as compared to conventional grid computing, which can also 
be applied to supercomputing and high-performance computing, and 
this does not necessarily mean data mining or big data. Furthermore, 
a distributed computing system can manage hundreds to thousands 
of computers, each of which is limited in its processing resources (e.g., 
memory, CPU, storage, etc.). By contrast, a grid computing system 
makes efficient use of heterogeneous systems with optimal workload-
management servers, networks, storage and so forth. Therefore, 
a grid computing system supports computation across a variety of 
administrative domains, unlike a traditional distributed system.

The most common computing devices, such as personal desktop 
computers, use a single processor with a main memory, a cache, 
and a local disk (or a computing node). In the past, applications 
used for parallel processing in large scientific statistical calculations 
employed special-purpose parallel computers with many processors 
and specialized hardware. However, the prevalence of large-scale 
web services has encouraged a turn toward distributed computing 
systems: that is, installations that employ thousands of computing 
nodes operating more or less independently with a given application 
(e.g.,[38,39]). Since these computing nodes are off-the-shelf 
hardware, the cost of distributed systems is lower than that of special-
purpose parallel machines. Moreover, distributed systems allow for 
localized interactive access to BDA platforms. In response to the 
needs of distributed computing, a new generation of programming 
frameworks has emerged. These frameworks take advantage of the 
power of parallelism while avoiding pitfalls, such as the reliability 
problems posed by the use of hardware consisting of thousands of 
independent components, any of which can fail at any time. The 
framework used in the present study, the Hadoop cluster, with its 
distributed computing nodes and connecting Ethernet switch, runs 
jobs controlled by a master node (known as the NameNode); this 
master node is responsible for chunking data, cloning it, sending it to 
the distributed computing nodes (known as DataNodes), monitoring 
the cluster status and collecting or aggregating the results [38]. It thus 
becomes apparent that one must consider not only the architecture 
and computing system used in a BDA platform but also the extent 
to which the data processes used to produce results are inherent or 
customizable.

A number of high-level programming frameworks have 
been developed for use with HDFS. MapReduce, a programming 
framework for data-intensive applications introduced by Google, 
is the most popular component for use with Hadoop. Borrowing 
from functional programming, MapReduce enables programmers 
to define Map and reduce tasks in order to process large sets of 
distributed data in a specified sequence, thus allowing many of the 

most common calculations on large-scale data to be performed 
on computing clusters efficiently and in a way that is tolerant of 
hardware failures during compaction and computation. Therefore, 
distributed computing using the MapReduce-Hadoop framework 
represents a significant advance in the processing and utilization of 
Big Data, especially in the banking and transportation sectors but 
also in healthcare [36,40]. However, MapReduce is not suitable for 
online transactions or streaming; therefore, it does not lend itself to 
the accurate retrieval of data in real time.

The key strengths of the MapReduce programming framework 
are its high degree of parallelism combined with its simplicity and its 
applicability to a wide range of domains. The degree of parallelism 
depends on the size of the input data [20]. The Map function processes 
paired inputs (e.g.,key1 and value1) and returns intermediary pairs 
(e.g.,key2 and value2). Then the intermediary pairs are grouped 
together according to their keys. The Reduce function outputs new 
key-value pairs (e.g.,key3 and value3). High performance is achieved 
by dividing the processing into small tasks run in parallel in a cluster. 
Programs written in a functional style are automatically parallelized 
and executed by MapReduce. Employing MapReduce and Hadoop 
has two advantages: (1) reliable data processing with fault-tolerant 
storage methods that replicate computing tasks and clone data chunks 
on different computing nodes across the computing cluster and (2) 
high-throughput data processing via a batch processing framework 
and the Hadoop Distributed File System (HDFS) [38,40-43]. Thus, 
not only are Hadoop and MapReduce compatible but their inherent 
processes allow them to perform well in combination.

A large and growing range of technologies related to Hadoop is 
emerging. Open-source software for use with the HDFS is updated 
monthly and even weekly. Chang et al. [41] state that the HDFS is 
designed to build a distributed data center mostly from software 
rather than hardware. Software applications installed in various 
versions of HDFS use data duplicates to enhance reliability. Although 
data duplicates need extra storage space and hence require a larger 
investment in infrastructure, deduplication techniques can improve 
efficiency in the use of storage space [41]. Within the growing 
Hadoop ecosystem, a number of software applications and Big Data 
platforms have been developed for use in bioinformatics and genetics. 
However, very few Big Data platforms have been adopted for real-
time utilization in hospitals globally. Relatively new applications like 
Apache Spark (2013) and Apache Drill (2015) have yet to be tested 
for use with clinical databases and systems. In general, very little is 
known about the usability of Big Data platforms or frameworks in 
healthcare.

Design the Analytics Framework
In considering the design of a framework for a BDA platform to 

use in the field of healthcare, the basic construct of processes over 
a platform requires diverse clinical data from multiple sources and 
querying large volumes. Also, the configuration must ensure patient 
data security, confidentiality and privacy. This section describes our 
approach of constructing the framework.

The Conceptual Analytics Framework

The BDA platform should harness the power of accessible front-
end applications to analyze large quantities of data in an interactive 
manner, while enriching the user experience with data visualizations. 
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All this functionality must be accomplished at moderate expense. 
Based on these requirements, we construct an interactive dynamic 
framework (Figure 1). And to meet requirements of clinical users 
front-end and interfaced applications were tested (i.e. Apache Phoenix, 
Spark, and Drill) and integrated with the HDFS and back-end NoSQL 
database of HBase. Together, the framework and the applications 
allow users to query, visualize, interpret and modify outputs of the 
data. The overall purpose is to make Big Data capabilities accessible 
to stakeholders, including University of Victoria (UVic) researchers, 
VIHA physicians, healthcare practitioners, database administrators 
and web-based application developers.

The proposed analytics framework included the following nine 
components: 

1. A high performance computer (HPC) clusters with a total 
of 72 cores and parallelized six nodes. Serial programs run on one 
CPU or core in one of the computing nodes in the cluster. Multiple 
copies are run over the cluster by submitting serial batch jobs by user; 
while parallel programs, on the other hand, had multiple processes or 
threads that can run at the same time. This study utilized the batch 
serial process to access and start jobs over the Hadoop with some 
parallel MapReduce processes in the top-down architecture from 
head node to worker or slave nodes.

2. A back-end NoSQL database of HBase (NoSQL version 
0.98.11) was used. HBase is a NoSQL database composed of the 
main deployment master (DM) node and its fail-over master, the 
RegionServers holding HBase data, and ZooKeeper, which contained 
services to allocate data locality [44], of three nodes, that orchestrated 
that ensemble. The xml configuration files of HBase-site.xml and the 
HBase-env.sh were adjusted to improve the performance of HBase. 
HBase was chosen due to its NoSQL services, especially linear to 
modular scalability to document architecture. It uniquely indexed 
rows to columns and established key-stores to encrypt the data. 
In addition, it allowed for SQL-like layer of Apache Phoenix to be 
configured on top of HBase big-tables.

3. In the emulation of the database, each row represented 
encounter-based patient data as a Big Integer type with diagnoses, 

interventions and procedures specific to that patient. This patient 
encounter model coincided with the Health Authority’s current 
Admission, Discharge and Transfer (ADT) system in its database 
schema linked to data warehouses, which also includes Discharge 
Abstract Database (DAD) (see Table 1). This patient-specific 
structure in the database allows for active updates to add to the data 
generation while maintaining accurate patient querying over the 
platform in the system. All necessary data fields were populated for 
50 million records before replication to form three-nine billions of 
records. This data followed the workflow of VIHA staff. Rows across 
the columns according to the existing abstraction of patient visits to 
hospital. HBase established this row-column relationship(s) with a 
wide range of indexes for each unique row and each row contained 
a key value that was linked to the family of qualifiers and primary 
keys (columns). HBase operators were specific to family qualifiers at 
each iteration; therefore, the data was patient-centric combined with 
certain data (from different sources of metadata), such that summary 
of diagnosis or medical services as a whole could be queried.

4. The construction of the framework of HBase (NoSQL) across 
Hadoop (HDFSversion 2.6.0)\MapReduce established the BDA 
platform. This construct coincided with and was enforced by the 
existing architecture of the WestGrid clusters at UVic (secure login 
via lightweight directory access protocol or LDAP to deploy jobs 
under restricted accounts). It was initially running the architecture of 
the platform with five worker nodes and one master node (each with 
12 cores) and planned on increasing the (dedicated) nodes to 11 and 
possibly to 101, as well as incorporating a non-dedicated set of virtual 
machines on WestGrid’s openstack cloud.

5. A master Deployment Manager (DM) is the portable batch serial 
login that was configured as head node to worker nodes. Deployment 
of the Hadoop environment on the nodes carried out via a sequence 
of setup scripts that the user calls after loading the necessary modules 
and setup additional configuration to the head node with YARN and 
ZooKeeper as allocators of various deployments. Setup scripts created 
an initial configuration depending on the number of nodes chosen 
when launching the job. The user can adjust those configurations 
to match the needs of the job and its performance. The data were 
distributed in parallel on the nodes via a balanced allocation with 
every running part of the batch jobs in an initialized serial computing 
process.

6. Making the DBA platform InfiniBand-enabled was challenging, 
as most of the Hadoop environment services rely on the hostname to 
get the IP address of the machine. Since the hostnames on a cluster 
are usually assigned to their management network, the setup scripts 
and the configuration files required adjustment. The InfiniBand was 
used because it offers low latency and high bandwidth (~40Gb/s) 
connectivity between the nodes. YARN, Hadoop’s resource job 
manager, unfortunately still partly uses the Gig-Ethernet interface 
when orchestrating processes among the nodes, but the data transfer 
was carried out on the InfiniBand. Yarn was the resource manager 
of Hadoop and services of scheduling incongruent to running the 
Hadoop jobs [38].

7. The queries via Apache Phoenix (version 4.3.0) resided as a 
thin SQL-like layer on HBase. This allowed ingested data to form 
structured schema-based data in the NoSQL database. Phoenix can 
run SQL-like queries against the HBase data. Similar to the HBase 

Figure 1: The proposed Big Data Analytics (BDA) of hospital system 
including Hadoop/MapReduce with YARN and ZooKeeper, HBase, Apache 
Spark, Apache Drill, and Interfaces (Jupyter and Zeppelin). The squares 
represent desired outputs of the platform to end users.



Citation: Chrimes D, Kuo MH, Moa B and Kushniruk AW. Interactive Big Data 
Analytics Platform for Healthcare and Clinical Services. SM J Biometrics Biostat. 
2018; 3(2): 1030. Page 5/16

Gr   upSM Copyright  Chrimes D

Table 1: Use cases and patient encounter scenarios related to metadata of the patient visit and its placement in the database related to query output.

Case No. Case* Column (Metadata) Used for Analysis Database Build Query Output

1 Uncontrolled Type 2 diabetes & 
Complex comorbidities

ICD10-CA, MRN, PHN and LOS, 
Discharge

DAD with Diagnosis 
Codes, patient IDs and 
Discharge in Columns

ICD10-CA codes with counts, frequencies or 
max values for patient encounters

2 TB of the lung & uncontrolled 
DM 2

ICD10-CA, MRN, PHN, Inpatient 
Encounter, Location, Unit Transfer DAD and ADT columns

ICD10-CA and encounter type codes with 
counts, frequencies or max values for patient 

encounters

3
A on C Renal Failure, Fracture, 
Heart Failure to CCU and stable 

DM 2

ICD10-CA, MRN, PHN, Intervention (CCI), 
Episode, Unit Transfer, Bed Location, CCU 

codes, Discharge
DAD and ADT columns

ICD10-CA, CCI and encounter types and 
unit transfer and bed location codes with 

counts, frequencies or max values for patient 
encounters

4 Multi-location Cancer patient on 
Palliative

ICD10-CA, MRN, PHN, Intervention (CCI), 
Surgery, Episode, Bed Location, Transfer 
to ALC Unit, Medical Services and Patient 

Services, Discharge

DAD and ADT columns

ICD10-CA, CCI and encounter types and unit 
transfer and bed location and medical service 
codes with counts, frequencies or max values 

for patient encounters

5 1 cardiac with complications
ICD10-CA, MRN, PHN, Intervention (CCI), 
Surgery, Episode, Bed Location, Transfer, 

Medical Services, Discharge
DAD and ADT columns

ICD10-CA, CCI and encounter types and 
transfer codes with counts, frequencies or 

max values for patient encounters

6
1 ER to surgical, Fracture, re-

admit category 7 days and some 
complication after

ICD10-CA, MRN, PHN, Intervention (CCI), 
Surgery, Episode, Bed Location, Medical 
Services, Progress Notes, Discharge, Re-

Admission

DAD and ADT columns
ICD10-CA, CCI and medical services and re-
admit codes with counts, frequencies or max 

values for patient encounters

7
1 Simple Day-Surg. with 

complication, so got admitted to 
Inpatient (Allergy to medication)

ICD10-CA, MRN, PHN, Intervention (CCI), 
Surgery, Bed Location, Medical Services, 

Discharge
DAD and ADT columns

ICD10-CA, CCI and medical services codes 
with counts, frequencies or max values for 

patient encounters

8 1 cardiac with complications and 
Death

ICD10-CA, MRN, PHN, Intervention (CCI), 
Episode, Bed Location, Transfer, Medical 

Services, Discharge Disposition
DAD and ADT columns

ICD10-CA, CCI and medical services, 
discharge disposition and transfer codes with 
counts, frequencies or max values for patient 

encounters

9 1 Normal birth with postpartum 
hemorrhage complication

ICD10-CA, MRN, PHN, Intervention (CCI), 
Surgery, Episode, Bed Location, Medical 

Services, Discharge
DAD and ADT columns

ICD10-CA, CCI and medical services and 
discharge codes with counts, frequencies or 

max values for patient encounters

10 1 HIV/AIDS patient treats for 
underlying factor (an infection)

ICD10-CA, MRN, PHN, Medical Services, 
Discharge DAD and ADT columns

ICD10-CA, and medical services codes with 
counts, frequencies or max values for patient 

encounters

11 Strep A infection ICD10-CA, MRN, PHN, Medical Services, 
Discharge DAD and ADT columns

ICD10-CA, and medical services codes with 
counts, frequencies or max values for patient 

encounters

12 Cold but Negative Strep A. Child 
with throat culture

ICD10-CA, MRN, PHN, Medical Services, 
Discharge DAD and ADT columns

ICD10-CA, and medical services codes with 
counts, frequencies or max values for patient 

encounters

13 Adult patient with Strep A. positive 
and physical exam

ICD10-CA, MRN, PHN, Medical Services, 
Patient Services, Discharge DAD and ADT columns

ICD10-CA, patient and medical services 
codes with counts, frequencies or max values 

for patient encounters

14 Severe Pharyngitis with physical 
exam

ICD10-CA, MRN, PHN, Medical Services, 
Patient Services, Discharge DAD and ADT columns

ICD10-CA, patient and medical services 
codes with counts, frequencies or max values 

for patient encounters

15
Child, moderate Pharyngitis, 

throat culture negative, physical 
exam

ICD10-CA, MRN, PHN, Medical Services, 
Discharge DAD and ADT columns

ICD10-CA, and medical services codes with 
counts, frequencies or max values for patient 

encounters

16 Adult, history of heart disease, 
Positive culture for Strep A.

ICD10-CA, MRN, PHN, Medical Services, 
Patient Services, Discharge DAD and ADT columns

ICD10-CA, patient and medical services 
codes with counts, frequencies or max values 

for patient encounters

17

Adult, physical exam, moderate 
pharyngitis, positive for strep A. 

culture and positive second time, 
re-admit

ICD10-CA, MRN, PHN, Medical Services, 
Patient Services, Discharge DAD and ADT columns

ICD10-CA, patient and medical services 
codes with counts, frequencies or max values 

for patient, readmit encounters

*Use Case Descriptions:

Case 1: Uncontrolled Type 2 Diabetes (DM) & Complex comorbidities: A retired 69-year-old man with a 5-year history of type 2 diabetes. Although he was 
diagnosed 5 years ago, he had symptoms indicating hyperglycemia for 2 years before diagnosis. He had fasting blood glucose records indicating values of 118-127 
mg/dl, which were described to him as indicative of “borderline diabetes.” Presented with uncontrolled type 2 diabetes and a complex set of comorbidities, all of which 
needed treatment.

Case 2: Tuberculousus (TB) & uncontrolled Diabetes (DM) Type 2: Tuberculin skin test was reactive and her chest x-ray revealed opacity in the right lung. A smear 
test was positive for acid-fast bacilli and culture and sensitivity results are pending. In addition, the patient had an uncontrolled DM episode which was caught late and 
she ended up with acute renal failure. She spent extra days in the hospital to take care her DM type2 complications. The culture test was eventually confirmed TB. 
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Case 3:  A on C Renal Failure, Fracture, Heart Failure to CCU and stable DM Type 2: A patient was admitted from a long term care facility. The elderly patient 
is 80 years old. She was admitted for renal failure. She was diagnosed with acute on chronic renal failure. She has a history of diabetes type 2. During this episode 
of care she developed an infection that resulted in respiratory failure and severe sepsis, Group A Streptococcus, pneumonia. her health deteriorated, her attending 
physician also admitted her to the CCU for heart failure. 

Case 4: Multi-location Cancer patient on Palliative: A 79 year old patient visited ER for cold that had lasted a month. He was tested for bacterial infection and was 
negative. After further examination a skin lesion was noted, which was growing. The patient subsequently was admitted to inpatient ward and went for the biopsy of the 
lesion which came back positive for melanoma. After further examination of prostate, the PSA test, it was noted that patient required biopsy of the prostate. After further 
examination, the patient was designated ALC and was discharged to palliative care unit. He was discharged to a hospice after 12 days of ALC stay in the hospital. 

Case 5:1 cardiac with complications: Patient was admitted for pain in his chest. He has had a history heart disease and high blood pressure. The ECG showed 
a ST elevation. Subsequently, patient underwent a PCI and the left main coronary artery dilation was performed. We used laser dilator with stent to perform dilation. 
Patient was stable after the intervention. He had DM 2 and needed immediate access to Reno-dialysis. With patient consent, we implemented a hemodialysis device 
subcutaneously for better care. Patient discharged in stable conditions.

Case 6: 1 ER to surgical, Fracture, re-admit category 7 days and some complications: Patient admitted to ER for fracture of the right arm. After an x-ray, it showed 
a complex fracture of right radius, and right ulna, and needed immediate intervention to fix the fracture. Subsequently, patient was admitted to surgery and underwent 
an open surgery for internal fixation of the fractures of both radius and ulna. The ulna required the use of staple and wire. All bleedings were cauterized. The patient 
was given antibiotics interaoperatively. The patient will need the removal of the implemented devices on a later date. Patient left the OR in stable conditions. Patient 
stayed overnight and was discharged next morning. 

Case 7: 1 Simple Day-Surg. with complication, so got admitted to Inpatient (Allergy to medication): Patient was scheduled for a laparoscopic removal of gallbladder 
(Cholecystectomy). In addition, surgeon did exploration of the bile ducts and found several stones that were also removed. At postop, patient got a severe reaction to 
an antibiotic (penicillin) and she was admitted to inpatient for monitoring. During her stay, she developed fever and eventually went to anaphylactic shock and had 8 
seizures. 

Case 8: 1 cardiac with complications and death: 90 year old patient was admitted from a nursing home. She had cardiac and renal failure. The patient was treated 
with ACE inhibitors and Digoxin. She was admitted to CCU, and for her renal failure she was put a dialysis device. Unfortunately, she developed a bacterial infection 
and had a severe reaction to the antibiotic medication which caused her to go into anaphylactic shock. She lost consciousness at 12 am and pronounced dead at 3:30 
am. 

Case 9:1 Normal birth with postpartum hemorrhage complication: An Anemic mother gave birth to a healthy newborn. However, after her normal birth, she 
developed increased blood loss and resulted in the postpartum hemorrhage. The surgeon was called in to do a partial hysterectomy. The patient undergone the 
hysterectomy and after a day of monitoring, she was discharged.

Case 10:1 HIV/AIDS patient treats for underlying factor (an infection): A known HIV patient was admitted for treatment of his current infection. He was diagnosed 
with Pneumocystis carinii pneumonia and admitted for care. He was treated with antibiotic and he was discharged with stable conditions. 

Case 11: A 22-year old male college student presented with a two-day history of runny nose and slight cough, fever to 102 degrees Fahrenheit with occasional 
chills and muscle aches. He had taken two aspirin prior to seeing his physician. Physical examination was unremarkable accept for temperature of 101, marked 
pharyngitis and clear rhinitis. RADT was positive for group A streptococci. The patient was given a prescription for Penicillin V 500 mg and told to take one pill twice a 
day for 10 days. Patient was also told to call the office if his symptoms did not improve in 3 days. He did not call to report any continued problems. 

Case 12: A 3-year old girl was seen in the hospital with a 24-hour history of acute throat and fever. On physical examination, her temperature was 103 Fahrenheit 
and her left tonsil acutely inflamed. A sample was taken for a throat culture and the patient’s mother was given a prescription for Amoxicillin 250mg to give to the child 
three times per day for 10 days. The mother was told to call the office if the child’s symptoms persisted. The throat culture report, filed in the patient’s chart four days 
after the initial visit, was negative. 

Case 13: A 42-year old man who works as a long-haul truck driver presented to the hospital with a stuffed nose, severe sore throat, and a cough. On physical 
examination, his temperature was 100 degrees Fahrenheit, his respiration rate was 18, and his lung had fine rales of the left side. RADT was positive for group A 
Streptococci. Patient was given a prescription for Penicillin V 250 mg to take three times a day for 10 days.

Case 14: An 18-year old moderately retarded female who lives in a foster care home was brought to the hospital because she was complaining of feeling sick 
and having a mild sore throat. On physical examination, her temperature was 100 Fahrenheit, she had severe pharyngitis with a few petechiae on her uvula, and 
erythematous tonsils, and cervical adenopathy. RADT was positive for group a streptococci. The patient’s caregiver was given a prescription for 500 mg Amoxicillin 
(oral suspension) to give the girl twice a day for 10 days. 

Case 15: A 5-year old boy was brought to the physician. His mother said he had been complaining of a sore throat and had exhibited a decreased appetite over the 
past 3-4 days. On physical examination, there was moderate pharyngitis with some exudates and marked bilateral swelling of the anterior cervical nodes. The patient’s 
temperature was 99.8 degrees Fahrenheit. A throat culture was attempted but the patient resisted attempts to obtain an adequate specimen. The mother was given a 
prescription for Amoxicillin (oral suspension) 250mg to give to the child twice a day for 10 days.

Case 16: A 52-year old female with a history of heart disease secondary to childhood rheumatic fever was seen by her physician following a 2-day history 
of several sore throat, fever, and myalgia. On physical examination, the woman’s throat was found to be inflamed and anterior cervical adenopathy was present. 
Temperature was 101.2 degrees Fahrenheit. RADT was positive for group a streptococci. A throat culture was done. Patient was given a prescription for Erythromycin 
500 mg to take three times a day for 10 days (she is allergic to penicillin). The patient was scheduled to return in 10days for a repeat throat culture. Upon return to the 
hospital, the patient’s symptoms had improved. The repeat throat culture was negative. 

Case 17: A 42-year old female who works in a day care center was seen by her physician for a 2-day history of fever, malaise, and sore throat. On physical 
examination, she was found to have anterior cervical adenopathy and moderate pharyngitis. Her temperature was 100.2 degrees Fahrenheit. RADT was negative. A 
throat culture was done and patient was given a prescription for Penicillin V 250 mg to take three times a day. The culture report, which was filed in the patient’s records 
2 days after her hospital visit, was positive for group a streptococci. The patient was notified of the culture results. She indicated to the physician’s nurse, who phoned 
with the results, that her symptoms were starting to subside and her temperature had returned to normal. The muse told the patient to continue taking the antibiotics 
for the full 10 days and to call the hospital if she did not improve. The patient returned to the hospital in six weeks with symptoms similar to her previous visit. The 
RADT was positive at that time. The patient indicated that several of the children in the day care center were taking Amoxicillin for strep throat infections. The physician 
discussed the need for good hand-washing techniques for the patient and for the children in the day care center. The patient was given a prescription for Penicillin V 
250 mg to take three times a day for 10 days and told to contact the hospital if her symptoms did not improve or if she had a recurrent infection. The patient did not 
contact the hospital again for this problem.
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shell, Phoenix is equipped with a python interface to run SQL 
statements and it utilizes a .csv file bulkloader tool to ingest a large flat 
file using MapReduce. The load balancing between the RegionServers 
(e.g., “salt bucket” code) was set to the number of worker nodes that 
allowed ingested data to be distributed evenly.

8. Apache Spark (version 1.3.0) was also built from source and 
installed to use on HBase and the Hadoop cluster. Spark utilizes Yarn 
and HDFS architecture and is known to scale and perform well in the 
data space (over distributed files).

9. Inspired by Google’s big query engine Dremel, Drill offers a 
distributed execution environment for large-scale ANSI-SQL: 2003 
queries. It supports a wide range of data sources, including .csv, 
JSON, HBase, etc... [45]. By (re)compiling and optimizing each of 
the queries while it interacted with the distributed data sets via the 
so-called Drillbit service, Drill showed capacity of the query with 
performance at a low latency SQL query. Unlike the master/slave 
architecture of Spark, in which a driver handles the execution of the 
DAG on a given set of executors, the Drillbits were loosely coupled 
and each could accept a query from the client [46]. The receiving 
Drillbit becomes the driver for the query, parsing, and optimization 
over an efficient, distributed, and multiphase execution plan; it also 
gathers the results back when the scheduled execution is done [46,47]. 
To run Drill over a distributed mode, the user will need a ZooKeeper 
cluster continuously running. Drill 1.3.0 and ZooKeeper 3.4.6 were 
installed and configured on the framework of the platform over a port 
with a local host.

Computational Platform

In this study, we used high performance clusters of WestGrid. 
WestGrid is a Canada government-funded infrastructure program 
started July 2010 at UVic. In Western Canada, it provides access to 
high performance computing and distributed data storage, using a 
combination of grid, networking and collaboration tools [48]. 

The WestGrid computing facilities at UVic house the Hermes 
and Nestor system, which are the two super clusters that share 
infrastructure, such as resource management, job scheduling, 
networked storage, and service and interactive nodes. Also, Hermes 
and Nestor share login nodes: hermes.westgrid.ca and nestor.
westgrid.ca (hermes.westgrid.ca and nestor.westgrid.ca are aliases for 
a common pool of head nodes named litaiNN.westgrid.ca). Nestor is 
a 2304-core capability cluster geared towards parallel jobs. It consists 
of 288 IBM iDataplex servers with eight 2.67 GHz Xeon x5550 cores 
and 24 GB of RAM. Data is shared between nodes and the GPFS 
file system using a high-speed InfiniBand interconnect. Hermes is a 
2112-core capacity cluster geared towards serial jobs. It consists of 
84 nodes having eight cores each and 120 nodes with 12 cores each.

The Data Process Pipeline

The proposed framework with the techniques and tools used in a 
data process pipeline were carried in six steps.

Step 1. Data preparation and privacy protection

Privacy protection is an important requirement in healthcare 
data. All patient data must be identifiable and cataloged across the 
hospital system. Typically this is carried out by business/security 
analysts based on regulations and data analyst for maintenance in 

data warehouse. The goal of this step (in our study) is to generate a 
comprehensive list of sensitive elements specific to the organization 
and discover the associated tables, columns and relationships 
across the data warehouse. After that is established, data masking 
or generating an encrypted data replication over its distribution 
will be used to conceal the patient’s identity while preserving the 
information, relationships and context [49].

Step 2. Data Acquisition

There is a wide range of tools and technologies for bulk loading 
and accessing large datasets from different sources. In this study, we 
proposed to use Apache Sqoop to ease the transfer between VIHA data 
warehouse and the WestGrid. Sqoop is a tool designed for efficiently 
transferring bulk data between Apache Hadoop and structured data 
repositories. For collecting and gathering unstructured data, such 
as logs, we used Apache Flume. Flume is a distributed, reliable, and 
available service for efficiently collecting, aggregating, and moving 
large amounts of log data. High-speed file transfer technologies, such 
as SCP and GridFTP, were used to transfer huge amounts of data into 
the parallel file system (GPFS). 

Step 3. Data maintenance

The aggregated data was stored and maintained over HDFS in 
NoSQL HBase over Hermes nodes in WestGrid. To improve the 
ingestion of the 90 columns over generated three-nine billion rows, 
local disks of 40TB in total were physically installed on the worker 
nodes. After local disks were installed, a set of shell scripts was used 
to automate the generation and ingestion process of 50 million 
records as a batch at each of the iterations (via MapReduce). The goal 
of study was to run towards ten billion rows but due to operational 
barriers, workflow limitations and table space of key stores, which 
almost tripled during the iterations, nine billion achieved but only 
three billion could be queried. Some limitations of the Hadoop/Map 
Reduce framework occurred because local disks had to be reinstalled 
after the failover from WestGrid’s 500GB disks to 2TB slots did not 
work.

Step 4. Data integration

The data were modelled according to the critical data profiles 
from the clinical event tables. Each of the data elements were derived 
from naming conventions of the patient record tables of Admission, 
Discharge and Transfer (ADT), i.e., Figure 2, as well as data standard 
of Discharge Abstract Database (DAD), i.e., Figure 3, for clinical 
reporting. This was technically established by SQL-like code run over 
HBase via Apache Phoenix [50]. Additionally, the most important 
step in the data integration was that the data was transformed 
into appropriate formats via task scheduler in Map Reduce over 

Figure 2: Conceptualized database of Admission, Discharge, and Transfer 
(ADT) from Vancouver Island Health Authority (VIHA) for simulation.
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HDFS. The two components Map and Reduce placed files over the 
distributing file process but there were different performances. Map 
portion took only three minutes, but the Reduce part of bulkload and 
indexing took three to twelve hours. Also, Reduce did not run at a 
constant percentage of Map and ranged from 20-60%. To improve 
the Reducer, several manual steps were taken including compression 
of the H Files in HBase. However, there was still on average 400-500 
minutes to complete the upload and integration, and the compression 
failed periodically, which resulted in a delay to clean out failed files 
and re-process the data from Map Reduce. This issue was investigated 
and deemed caused in large part by HBase’s Region Server hot-
spotting or over-utilization that stalled the releasing process. Thus, 
the data process of the platform had a major limitation with the 
Map Reduce that persisted. Additionally, as part of the process, 
ZooKeeper and Yarn connectivity and Region Servers connecting 
to network only persistently connected to UVic’s network instead of 
WestGrid’s InfiniBand, which drastically slowed performance. Some 
configuration to ZooKeeper and Yarn minimized this occurrence 
but no concrete resolution was found. Thus, this step to integrate the 
data over the HDFS to HBase required manually configuration and 
monitoring at each and every batch submitted.

Step 5. Data analysis

To handle intensive computation, we used the MapReduce 
programming model that distributed analytic/data mining tasks. 
The MapReduce templates were tailored to use with applications of 
Apache Phoenix, Spark and Drill on the HBase database. To give 
the structured data the same semantics, as its relational database 
counterpart, we opted to use Phoenix on HBase because it is still a 
relational database layer that runs on top of HBase and offers a low-
latency SQL-like access to HBase by running multiple parallel HBase 
scans on different region servers [14]. For developing some of the 
applications for end users, we also engineered notebooks on Jupyter 
and Zeppelin interfaces over Web browsers to connect to the database 
and interactively apply queries simultaneously to generate results.

Step 6.Pattern representation and visualization

Pattern presentation was found thru interface tools of Apache 
Spark (version 1.3.0) and Drill over the platform. Apache Spark 
was also built from source and installed to use on HBase and the 
Hadoop cluster. The intent was to compare different query tools like 
Apache Spark and Drill against Apache Phoenix using similar SQL-
like queries. The results showed that the ingestion time of one billion 
records took circa two hours via Apache Spark [51]. Apache Drill 
outperformed Spark/Zeppelin and Spark/Jupyter. However, Drill was 
restricted to running more simplified queries, and was very limited in 
its visualizations. Therefore, it exhibited poor usability for healthcare. 
Zeppelin, running on Spark, showed ease-of-use interactions for 
health applications, but it lacked the flexibility of its interface tools 
and required extra setup time with a 30-minute delay before running 
queries. Jupyter on Spark offered high performance stacks not only 
over our platform but also in unison to run all queries simultaneously 
for a variety of reporting for providers and health professionals.

Simulation
Computing Platform and Configurations

In this section, we describe our steps and experiences to test the 

technical framework of the BDA platform. To accomplish this, we 
installed and configured a Hadoop environment from source on the 
WestGrid cluster, and a dynamic Hadoop job was launched. It was 
configured by hdfs-site.xml and a MapReduce frame, configured via 
MapRed-site.xml that ran under the Hadoop resource manager Yarn 
(with configuration file yarn-site.xml). The number of replicas was 
set to three. To interact with HDFS, command scripts were run to 
automate the ingestion step (generate data replication in the exact 
format specified by SQL script to the nodes).

The BDA platform was built on top of the available open source 
software called HBase. HBase comprised a main Deployment Master 
(DM) and fail-over master. Its region servers held HBase data 
and a ZooKeeper of three nodes orchestrated the ensemble. The 
xml configuration file HBase-site.xml and the HBase-env.sh were 
adjusted to configure and fine tune HBase. HBase was chosen due 
to its real-time read/write access, and linear and modular scalability. 
HBase consisted of unique rows and each row contains a key value. A 
key value entry has five parts: row-key (row), family (fam), qualifier 
(qua), timestamp (ts) and value (val) denoted as:

 KEY:=row||fam||qua||ts. 

Additionally, to establish the HBase key value entries there are 
four operations: 

1.	 Put - inserts data; 

2.	 Get - retrieves data of a specific row; 

3.	 Delete - removes a data row; 

4.	 Scan - retrieves a range of indexed rows. 

The last three operations can be limited to specific family, 
qualifiers, or over a certain time range. In addition, it allows for SQL-
like layers via Apache Phoenix to be configured on top to bulkload to 
HBase [50]:

Figure 3: Conceptualized database of Discharge Abstract Database (DAD) 
from VIHA for simulation.
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CREATE TABLE IF NOT EXISTS DADS1 

EncounterID BIGINT NOT NULL,

Admit_by_Ambulance VARCHAR,

Admit_Category VARCHAR,

Admission_Date VARCHAR,

Admission_Time VARCHAR,

age INTEGER,

Anesthestic_Grade VARCHAR ,

Anesthetist_ID VARCHAR,

Anesthetistic_Technique INTEGER,

Arrival_Date_in_ER VARCHAR NOT NULL,

Arrival_Time_in_ER VARCHAR NOT NULL,

Date_Patient_Left_ED VARCHAR ,

Date_of_Transfer_In VARCHAR,

Days_in_Unit VARCHAR,

Discharge_Date VARCHAR NOT NULL,

Discharge_Disposition VARCHAR NOT NULL,

Discharge_Site VARCHAR NOT NULL,

Discharge_Time VARCHAR NOT NULL,

Birth_Date VARCHAR,

Diagnosis_Cluster VARCHAR,

Diagnosis_Code VARCHAR NOT NULL,

Diagnosis_Occurrence INTEGER,

Diagnosis_Prefix VARCHAR,

Diagnosis_Type VARCHAR,

Entry_Code VARCHAR,

Episode_Duration INTEGER,

First_Name VARCHAR,

Glasgo_Coma_Scale VARCHAR,

Gender VARCHAR,

Health_Care_Number VARCHAR NOT NULL,

HCN_Prov VARCHAR,

Institute_From INTEGER,

Institution_To INTEGER,

Interven_Attribute_Extent VARCHAR,

Interven_Attribute_Location VARCHAR,

Interven_Attribute_Status VARCHAR,

Interven_Code VARCHAR,

Interven_Episode_Start_Date VARCHAR,

Interven_Episode_St_Date VARCHAR,

Interven_Location VARCHAR,

Interven_Occurrence INTEGER,

Interven_Options VARCHAR,

Interven_Pr_Number INTEGER,

Interven_Preadmit_Flag VARCHAR,

Interven_provider_service INTEGER,

Interven_Start_Time_unknown VARCHAR,

Interven_St_T_unknown VARCHAR,

Last_Name VARCHAR,

LOS INTEGER NOT NULL,

Middle_Name VARCHAR,

Most_Responsible_Site VARCHAR,

MRN VARCHAR,

Out_of_Hospital_ooh_indicator VARCHAR,

Out_of_hospital_ooh_number INTEGER,

PHN INTEGER,

Postal_Code VARCHAR,

Pdr_Number INTEGER,

Provider_Occurrence INTEGER,

Provider_Service VARCHAR,

Provider_Type VARCHAR,

Patient_Service INTEGER,

Patient_Service_Days INTEGER,

Patient_Service_Occurrence INTEGER,

Patient_Service_Type VARCHAR,

Readmit_Code INTEGER,

Reporting_Prov INTEGER,

Residence_Code INTEGER,

Responsibility_for_payment INTEGER,

Service_Nursing_Area VARCHAR,

Time_Patient_Left_ED VARCHAR,

Time_Pt_left_ED_unknown VARCHAR,

Transfer_Hours VARCHAR, 

Transfer_Nursing_Unit VARCHAR,

Transfer_In_Date VARCHAR,

Transfer_Out_Date VARCHAR,
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Unit_Transfer_Occurrence INTEGER,

Unplanned_return_to_OR VARCHAR,

Wait_Time_in_ED VARCHAR,

FIN INTEGER NOT NULL,

Encounter_Number INTEGER NOT NULL,

Admit_Source VARCHAR,

Encounter_Type VARCHAR,

Medical_Services VARCHAR,

MostResponProvider VARCHAR,

Address VARCHAR,

Family_Physician VARCHAR,

Location_Building VARCHAR NOT NULL,

Location_unit VARCHAR NOT NULL,

Location_Room VARCHAR NOT NULL,

Location_Bed VARCHAR NOT NULL,

CONSTRAINT PK PRIMARY KEY (EncounterID, Arrival_Date_
in_ER, Arrival_Time_in_ER, Discharge_Date, Discharge_Disposition, 
Discharge_Site, Discharge_Time, Diagnosis_Code, Health_Care_
Number, OS, FIN, Encounter_Number,Location_unit), Salt Buckets 
=5.

The deployment of the Hadoop environment was carried out via 
a sequence of setup scripts that the user runs after loading modules. 
These setup scripts created an initial configuration over the number 
of nodes requested to the batch system. The user could adjust the 
configurations to match the needs of the job. The services that the 
master node and slave nodes run are shown in Figure 4.

Making the platform InfiniBand-enabled was challenging. The 
InfiniBand was desirable as it offered low-latency and high-bandwidth 
(~40Gbit/s) connectivity between the nodes. However, most of the 

Hadoop environment services rely on the hostname to get the IP 
address of the machine. Since the hostnames on a cluster are usually 
assigned to their management network, the setup scripts and the 
configuration files needed to be adjusted. Yarn, Hadoop’s resource 
and job manager, unfortunately, still uses the Gig-Ethernet interface 
when orchestrating between the nodes but the data transfer is still 
carried out over the InfiniBand. Figure 5 shows peak values in disk 
space on a Hermes node utilized that is indicative of the maximum 
reached at the start of file ingestion via InfiniBand. The lows are due 
to compaction running on the disks after disk space is maximized and 
this was necessary to maintain a consistent range of data distributed. 
This was a desired result and showed high performance.

The Apache Phoenix allowed the ingestion to set a structured 
schema into the NoSQL database. The usual SQL queries can run in 
Phoenix against the HBase data. Similar to HBase shell, Phoenix is 
equipped with a python interface to run SQL statements. Moreover, 
Phoenix comes with a Comma-Separated Value (CSV) file bulk 
loader tool to ingest the large flat CSV files using MapReduce into 
a big table. Due to throughput and limited wall time, we could not 
ingest the full 1 billion records using HBase in one run (using the 
bulk loader) as its MapReduce required more than the available local 
disk spaces on the nodes to store the intermediate temporary files 
and timed out. Batch jobs (twenty-eighty) of 50-million records were 
then ingested one at a time. As explained further in the results, even 
with that, many ingestion attempts took a longer time than expected 
or failed. The load balancing between the RegionServers was also a 
major issue. Additionally, the performance and partitioning of data 
by MapReduce (its mapping and sorting) is highly dependent on how 
evenly it can distribute the workload [19,50]. To address it, we had 
to pre-split the table using the Phoenix “salt bucket” mechanism to 
evenly balance the distributed data to the nodes.

Data Emulation and Modeling

The established BDA platform was used to benchmark the 
performance of mining current and future reporting of VIHA’s 
clinical data warehouse, which in archive spans more than 50 years. 
Currently, the data warehouse has 100 fact and 581 dimension tables 
that all encompass a total of10 billion records. Huge volumes of health 

Figure 4: Construction of HBase NoSQL database with dynamic Hadoop 
cluster, and master and slave/worker services at WestGrid.

Figure 5: A year of iterations and IO Disk utilization (max 200MB/s) on 
Hemes89 node showing each duration of ingestion towards three billion 
during mid-May to October, 2016. The graph shows: bytes read (in red), 
bytes read max (in light read), bytes written (in green), and bytes written max 
(in light green). The bytes written and its max represent performance of the 
InfiniBand (160MB/s was achieved).
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data are continuously generated and added to this collection. Within 
the data warehouse, two of the largest datasets are the ADT and DAD. 
The former contains individual patient bed-tracking information, 
while the latter contains Canadian Institute for Health Information 
(CIHI) diagnostic codes and discharge abstract metadata fields.

Over the span of twelve months in 2014-15, several interviews 
were conducted with business intelligence data warehouse, clinical 
reporting, database administrators, application platform, and health 
informatics architecture teams employed at VIHA. All interviews 
were recorded and documented. During these interviews, a patient 
data system generated from hospital admissions (based on encounter 
types) and a discharge system (based on diagnoses and procedures) 
were established. Furthermore, data profiles, including dependencies 
and the importance of the metadata for the reporting performance of 
the hospital, were confirmed and verified for use over the Hadoop/
MapReduce to HBase framework.

In the emulated datasets, each row represented encounter-based 
patient data, with diagnoses, interventions, and procedures specific to 
that patient, that the current ADT system has in its database schema 
linked to a bigger data warehouse, which includes DAD (refer to 
Table 1). This patient-specific structure in the database allowed for 
active updates for accurate querying. The data emulated for both 
ADT and DAD were greatly simplified from the real patient records 
of hospitals (refer to Figures 2 and 3). In fact, the hospitals ADT alone 
has over 100 tables that could have patient information to query. 
However, we cross-referenced the most important information from 
ADT and DAD for clinical reporting with data wanting to be queried 
as a combined large data. 

Unlike relational database systems, HBase itself does not support 
SQL; in fact, HBase is not a relational data store at all. HBase applications 
like Apache Phoenix can provide an SQL-like layer over HBase and 
are written in Java, much like typical MapReduce applications. HBase 
settings had to be purged or cleaned after each of the ingestions due 
to unknown tracers or remnants of transactions that then later caused 
query inaccuracies. Every HBase system components comprises a 

set of tables. Each table must have an element defined as a Primary 
Key, and all access attempts to HBase tables need to use this Primary 
Key; even Apache Spark SQL can be linked to database conversions 
with HBase [52] and other transformation methods can be applied to 
healthcare data towards an intact NoSQL database [53]. Additionally, 
in our study, HBase column represented an attribute of an object; for 
example, if the table had logs from servers, where each row might 
be a log record, a typical column would show the timestamp of the 
time when the log record was written, or perhaps name of the server 
on which the record was originated. Thus, HBase allowed for many 
attributes to be grouped into so-called column families and stores the 
elements of the column family together.

Performance Evaluation

The pathway to running ingestions and queries from our build of 
the BDA platform was as follows: CSV flat files generated → HDFS 
ingestion(s) → Phoenix bulk loads into HBase → Apache Phoenix 
Queries. Under this sequence and after loading the necessary module 
environments for Hadoop, HBase and Phoenix and testing initial 
results linked to the family qualifiers and HBase key value entries. 
The SQL code (shown in Table 1) was then iteratively run to ingest 50 
million rows to the existing NoSQL HBase database (i.e., names of the 
columns were shortened but metadata kept exactly the same as ADT 
and DAD tables shown in Figures 2 and 3). 

For performance benchmarking, three metric measures were 
used: HDFS ingestion(s), bulk loads to HBase and query times via 
Phoenix. Three flat files in CSV format were ingested to HDFS. One 
with ten records and was used for quick testing, and two others were 
used for the actual benchmarking of 50 million records and one billion 
records. The measurements were automated as much as possible to 
make easy for the eventual benchmarking of 10 billion records. Figure 
6 shows the fluxes of the IE for all 60 iterations to three billion. We 
also computed the ingestion efficiency (IE) of one billion compared to 
50 million records using the formula in equation (1):

   			              			              (1)

Where Ti (N) is the time it takes to ingest N records to either 
HDFS or HBase. 

A SQL script containing all the queries was written and ran using 
Phoenix sqlline.py. The output of sqlline.py was redirected to a file 
for further validation. In addition to the query results, sqlline.py 
reported the time it took for each query (similar to the usual SQL 
query clients). The total number of queries that were used was 22: two 
simple queries with wildcard column selection; ten simple queries 
that did not involve more than three columns in the primary keys 
(family qualifiers); and, ten complex queries that had >3columns 
selected. These queries were chosen based on surveys and interviews 
with VIHA experts on current clinical reporting. Furthermore, the 
separation between simple and complex queries was also derived to 
compare to performance of Apache Spark and Apache Drill on the 
exact same data (Figure 7).

Figure 6: Sixty iterations of HFile to bulkloading via MapReduce to HBase 
distributed database. Solid line is actual minutes to complete all job tasks 
and the dotted line is average duration.
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Discussion
Essentially, this study proposes a row-column, key-value (KV) 

model to adopt the Hadoop/MapReduce framework to data distributed 
over a customized BDA platform for application in healthcare systems. 
Wang, Goh, Wong, and Montana [54] support this study’s claim in 
their statement that non-relational data models, such as the KV model 
implemented in NoSQL databases, exhibit accurate multivariate 
analysis of Big Data in a Hadoop forest using bioinformatics data. 
Wang et al. [55] further state that NoSQL provides high performance 
solutions for healthcare, being well suited for high-dimensional data 
storage and querying, as well as optimized for database scalability 
and performance. A KV-pair data model can support faster queries 
of large-scale microarray data and can be implemented using HBase, 
an implementation of Google’s BigTable storage system. This new 
KV data model implemented on HBase exhibited an average 5.24-
fold increase in high-dimensional biological data query performance 
compared to the relational model implemented on MySQL Cluster 
and an average 6.47-fold increase in query performance compared to 
MongoDB [40]. The performance evaluation found that the new KV 
data model, in particular its implementation in HBase, outperformed 
the relational model currently implemented, thereby supporting the 
use of NoSQL technology in BDA platforms for hospital systems.

With HBase, the table schema is dynamic because it can be 
modified at any time and incorporates different forms of data for 
different schemas [56]. However, in order for the platform to function, 
HBase’s schema must be predefined (as was done isingSQL-like 
Phoenix in this study) and the column families specified. However, 
the schema is very flexible, in that new columns can be added to 
families or groups at any time. It is therefore able to adapt to changing 
application requirements, as has been noted by many researchers 
[57,58]. As Sun [59] states, “Just as HDFS has a NameNode and 
slave nodes, and MapReduce has JobTracker and TaskTracker 
slaves, in HBase a master node (HMaster) manages the cluster and 
RegionServers store portions of the tables and perform the work 
on the data.” HMaster is the implementation of the Master Server, 
which is responsible for monitoring all RegionServer instances in the 
cluster. In this study’s distributed cluster, the Master started on the 
NameNode, while HRegionServer started the RegionServer(s). In a 
distributed cluster, a RegionServer runs on a DataNode [59], as was 

the case in our implementation. In HBase, through the ZooKeeper, 
various machines can be selected within the cluster as HMaster (unlike 
the HDFS architecture, in which NameNode has a single-point-
of-availability problem) [59]. HBase clusters can also be expanded 
by adding RegionServers hosted on commodity class servers. For 
example, when a cluster expands from 10 to 20 RegionServers, it 
doubles both in terms of storage and processing capacity. Therefore, 
more storage space is required as the number of nodes increases. The 
present study did confirm that HBase and HDFS worked efficiently: 
HBase supported parallelized processing via MapReduce, and the 
platform provided a user-friendly Java API for programmatic end-
user access.

It is possible to mimic a relational database with an SQL-
like structure using NoSQL [52]. The primary key strength of the 
patient encounter was created using “family” or groups of columns 
combined. And this combination proved necessary to obtain accurate 
query results on real patient data. Without the groupings to form the 
SQL-like primary key, the results from the query did not show the 
correct number of fields found. In addition, the key values needed 
to be unique; therefore, when replicating the ingestion, queries had 
to be modified in order to obtain a result. Chawla and Davis [60] 
emphasize the importance of the patient-centered framework for 
a Big Data platform. Since many Big Data platforms are linked to 
HDFS with non-relational databases, assuring the accuracy of patient 
data is of the utmost importance. This was achieved in simulating 
queries overthe NoSQL database, but the accuracy could not be fully 
validated over non-replicated data of more detailed patient-centric 
encounters.

Even though it is very difficult to move patient data from a 
hospital system that updates its clinical model storage in real-time, 
analyzing patient-level databases can yield population-level inferences 
or “results” (such as the strength of association between medical 
treatments and outcomes), often with thousands of outcomes. Other 
studies indicate that although data from such sources as hospital EHR 
systems is generally of much lower quality than data carefully collected 
by researchers investigating specific questions, the sheer volume of 
data can compensate for its qualitative deficiencies, provided that a 
significant pattern can be found amid the noise [3,61]. In addition, 
there is a trend toward higher quality Big Data collections (such as 
the data produced in genomic analysis and structured data generated 
from standard-compliant EHR systems) [62,63]. On the other hand, 
Mayer-Schönberger and Cukie [64] showed that as the population 
sample approaches 100%, messy data can have greater predictive 
power than highly cleaned and carefully collected data that represents 
a smaller sample of the target population. The present study did not 
analyze the structure of the metadata; ultimately it was designed to 
replicate massive volumes of patient data.

It was more challenging to use the simulated data in Spark 
and Drill to validate a proof-of-concept use of these tools with real 
data. Scott [55] suggests that the competition for the best Big Data 
software solutions is between Spark and Drill and that Drill can 
emulate complex data much more efficiently than Spark because 
Spark requires elaborate Java, Python and Scala coding. Nonetheless, 
in our study both Spark and Drill were significantly faster than HBase 
in ingesting files directly into Hadoop. In fact, the ingestion and 
queries for both Spark and Drill could be run in sequence without 

Figure 7: Query durations to running all 22 queries in total in seconds via 
Apache Spark (dot) and Apache Drill (line-dot).
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running compaction as well. However, it is difficult to compare the 
data emulation of HBase to that of Spark and Drill. Neither Spark 
nor Drill indexed the files, nor did they require the Reducer from 
MapReduce to complete its task before queries could be performed. 
Lack of indexing increases the risk of inaccuracies (even though the 
framework was more fault-tolerant when running Spark and Drill). 
Therefore, the Big Data tools and their inherent technologies therein 
strongly affect the health informatics of the data established and 
resulting queries.

The most impactful technology in this study was MapReduce (and 
its Java code). MapReduce methodology is inherently complex, as this 
study discovered, since its default programming framework employs 
separate Map and Reduce task. Our platform was highly dependent 
on the efficiency of MapReduce in ingesting files over the six nodes, 
using this workflow: Input → Map → Copy/Sort → Reduce →
Output. A study by Chen, Alspaugh, and Katz [65] reported a similar 
result. Once the Reducer optimized configurations in Yarn and 
ZooKeeper with iterations of 50 million rows with data, integrity of 
the desired clinical event model was established via SQL in Apache 
Phoenix. According to blogs with technical resolutions, enabling or 
disabling services or xml settings over the platform are expected to 
be carried out, because the system relies heavily on InfiniBand (IB) 
bandwidth and not all default settings can be applied automatically 
during initialization. Furthermore, slow performance is a known 
issue when using MapReduce over HBase after additional indexing of 
data and its store [38,40,66-68].

The data used in this study included diagnosis codes, personal 
health numbers, medical record numbers, dates of birth, and location 
mnemonics (to mention only a few of the 90 columns), as these codes 
are standardized for hospital systems and, compared to genetic data, 
more easily replicate metadata in large volumes. The use of groups of 
events allowed the definition of a phenotype to go beyond diagnosis 
as coded using the International Classification of Disease, version 9 
(ICD-9), potentially allowing assessment of the accuracy of assigned 
codes [62, 69]. In healthcare, the complexity of Big Data storage and 
querying increases with unstructured sets of data and/or images. The 
growth in the volume of medical images in modern hospitals has 
forced a move away from traditional image analysis and indexing 
approaches towards scalable solutions [70]. In fact, MapReduce has 
been used to speed up and make possible three large-scale medical 
image processing use-cases: (1) parameter optimization for lung 
texture classification using support vector machines (SVM), (2) 
content-based medical image indexing/retrieval, and (3) dimensional 
directional wavelet analysis for solid texture classification [71]. In 
one study, a default cluster of heterogeneous computing nodes was 
set up using the Hadoop platform, allowing for a maximum of 42 
concurrent Map tasks [INSERT CITATION]. However, this study 
did not test the quantity and efficiency of concurrent Map tasks of 
MapReduce to process the data to HBase ingestions.

Greeshma and Pradeepini [66] implemented a distributed 
file system that stored Big Data files and a MapReduce algorithm 
supported the performance of the analytics on a set of clusters. 
Performance of the platform queries did not rely on MapReduce, only 
controlled the actual ingestion of files to form the database. Spark and 
Drill used some components of MapReduce during the initialization 
of the queries, but this was minimal and non-reliable. The Hadoop 

approach used in this study’s platform did not consume large-scale 
data as a whole but broke it into smaller pieces distributed over the 
collection of servers and iterations. This placed the bulkloading on 
the AdminNode (deployment) that was deployed to NameNode and 
then distributed to DataNode. Our findings support Greeshma and 
Pradeepini’s [66] findings that NameNode and AdminNode usally 
suffice to store, manage, and access Big Data files.

This study did not benchmark the actual performance of 
the components of the platform to the exiting system that uses 
analytical tools across EHR. However, to replicate/transfer data from 
production to domains in the hospital system via secure FTP takes 
six or more months at 10-15 TB. Thus, our study’s demonstration 
that dataset volumes of 30-40 TB can be processed in three months 
represents an advance of roughly an order of magnitude over existing 
technical platforms. Moreover, Yu et al. [68] showed that Mahout’s 
MapReduce architecture was eight to five times slower than other 
modified MapReduce configurations. More specific to our proposed 
framework, Greeshma and Pradeepini [66] showed that adding Job 
Tracker to the MapReduce framework is useful, since Hadoop needs 
to be running during the queries; this solves the limitations of the 
relational data warehouse by continuously running with low resources 
over multiple nodes. Hence, Hadoop is a single point of failure, since 
it cannot stop running to perform any tasks or functionalities, a 
weakness demonstrated in the appearance of broken Hadoop clusters 
in a study by Rabkin and Katz [72].

A large body of research has studied ways of improving storage 
performance [73] or using compression techniques to reduce the 
volume of intermediate data [74,75]. The intermediate data movement 
time during the shuffle phase has been addressed [76,77]. However, 
none of these studies addressed the issue of memory limitation in 
the Reduce phase, which can lead to abortion of Reduce tasks, as 
reported by Yan et al. [78], who stress the importance of memory 
resources (abortion of Reduce tasks during ingestions occurred in 
our study, although the platform did not fail when queries were run). 
Greeshma and Pradeepini [66] propose a memory cached mechanism 
to be used with MapReduce to improve the Reducer, but this was not 
tested on other software technologies such as HBase. Additionally, 
while saturation of storage IO operations or network bandwidth can 
lead to performance degradation in the Reduce phase (a problem 
encountered on Regional Servers), the Hadoop framework does not 
kill the MapReduce application in such cases [79]. However, in the 
case of an out-of-memory error, the job is usually killed, since the 
Reduce phase needs to bring large quantities of intermediate data into 
memory for processing [80].

The present study showed that performing maintenance activities 
over the platform was essential for ensuring reliability. Some studies 
have shown that Hadoop can detect task failure and restart programs 
on healthy nodes, but, if the Region Servers for HBase fail, this 
process has to be started manually [67,81,82]. Our study showed that 
compaction improved the number of successful runs of ingestion; 
however, it did not prevent failure in ingesting the files, a finding that 
is also supported by other studies [36,38,80,83].

Conclusion
Few previous studies have designed and tested a BDA platform 

for use in healthcare as this study has done, applying Big Data 
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technologies to large volumes of simulated data in a clinical 
healthcare context. This study proposes a framework that not only 
replicates large amounts of data over the platform but also allows for 
combining data from different databases during each generation of 
the replication. The results show that replicating data from source 
to HBase to form three billion patient encounters required a month 
of computation time; therefore, the data needs to be stored before 
running the queries. Moselle [84] states that if data is stored with 
some permanency for more than a few hours without removal, public 
disclosure is required (in accordance with privacy laws regarding 
sensitive personal data). Furthermore, Dufresne, Jeram and Pelletier 
[85] point out that Canadians have a nationalistic view of their 
healthcare system, and having public data with publicly provided 
healthcare makes sense to many citizens, including providers and 
health professionals. Thus, if the BDA platform can produce accurate 
query results within seconds while the data is still housed in the 
hospital and/or is securely encrypted, then existing privacy policies 
should be changed unless public disclosure is deemed unnecessary.

Useful knowledge gained from this study included the 
identification of the following challenges: 

1. 	 Data aggregation. HBase key store qualifiers caused actual storage 
to double compared to what was expected, although big datasets 
of clinical, biomedical, and biometric data were processed 
successfully with Hadoop/MapReduce framework. 

2. 	 Data maintenance, Ingestions to the database required the 
continual monitoring and updating of versions of Hadoop 
(HDFS), MapReduce and HBase, with limitations persisting for 
MapReduce. 

3. 	 Data integration.Combination of ADT and DAD was shown to 
be possible and followed current clinical reporting, but a more 
complex clinical event model of the row keys and column families 
is required, which would necessitate further testing. 

4. 	 Data analysis. A high performance of 3.5 seconds for three billion 
rows and 90 columns (30TB) was achieved with increasing 
complexity of queries, but this finding needs to be corroborated 
when querying real data.

5. 	 Pattern interpretation of application. Health trends could not 
be discovered using the application; hence further investigation 
using Hadoop’s Machine Learning Libraries (MLLib) is required.

The design of the implemented BDA platform (utilizing 
WestGrid’s supercomputing clusters) is available to researchers 
and sponsored members. The next step in testing the platform will 
be to distribute and index the data to ten billion patient data rows 
across the database nodes and then test the performance using the 
established methodology. In a later phase, the research plan is to 
distribute the data across 100 nodes, since Hadoop’s HDFS and 
HBase are theoretically supposed to scale and function better as the 
number of nodes increases [14,15].

References

1.	 Chen M, Mao S, Liu Y. "Big Data: A Survey," Mobile Network Application. 
2014; 19: 171-209.

2.	 Viceconti M, Hunter P, Hose R. "Big data, big knowledge: big data for 
personalized healthcare," IEEE Journal of Biomedical and Health Informatics. 
2015; 19: 1209-1215.

3.	 Hansen MM, Miron-Shatz T, Lau AYS, Paton C. “Big Data in Science and 
Healthcare: A Review of Recent Literature and Perspectives,” Yearbook of 
Medical Informatics. 2014; 9: 21-26. 

4.	 Manyika J, Chui M, Bughin J, Brown B, Dobbs R, Roxburgh C, Hung B. Big 
data: The next frontier for innovation, competition, and productivity. Canada 
Health Infoway, Big Data Analytics in Health - White Paper. 2013. 

5.	 Raghupathi W, Raghupathi V. "Big data analytics in healthcare: promise and 
potential," Health Information Science and Systems. 2014; 2: 1-10.

6.	 Foster R. Health Care Big Data is a big opportunity to address data overload. 
Matchcite.

7.	 Shah NH, Tenenbaum JD. The coming age of data-driven medicine: 
translational bioinformatics' next frontier. Journal of the American Medical 
Informatics Association. 2012; 19: e2-e4.

8.	 Garrison LPJr. Universal Health Coverage-Big Thinking versus Big Data. 
Value Health. 2013; 16: S1-S3. 

9.	 Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-drive definition 
of big data in healthcare. BioMed Research International. 2015; 9.

10.	Wang B, Li R, Perrizo W. Big Data Analytics in Bioinformatics and Healthcare, 
Medical Information Science Reference. 2014. 

11.	Kuo MH, Sahama T, Kushniruk AW, Borycki EM, Grunwell D. “Health Big 
Data Analytics: Current Perspectives, Challenges and Potential Solutions,” 
International Journal of Big Data Intelligence. 2014; 1: 114-126.

12.	Grover M, Malaska TJ, Shapira G. Hadoop Application Architectures- 
Designing Real-World Big Data Applications. O'Reilly Media. 2015. 

13.	White T. Hadoop - The Definitive Guide: Storage and analysis at internet 
scale. O’Reilly Publishing, 2015. 

14.	Lai Wk, Chen YC, Wu TY, Obaidat MS. “Towards a framework for large-scale 
multimedia data storage and processing on Hadoop platform,” J. Supercomp. 
2014; 68: 488-507.

15.	Dai L, Gao X, Guo Y, Xiao J, Zhang Z. ‘Bioinformatics clouds for big data 
manipulation’, Biology Direct. 2012; 7: 1-7.

16.	Kumar A, Bawa S. ‘Distributed and big data storage management in grid 
computing’, International Journal of Grid Computing and Applications. 2012; 
3: 19-28.

17.	Merelli I, Pérez-Sánchez H, Gesing S, D’Agostino D, "Managing, Analysing, 
and Integrating Big Data in Medical Bioinformatics: Open Problems and 
Future Perspectives," BioMed Research International. 2014; 1-14.

18.	Moniruzzaman ABM, Hossain SA. NoSQL Database: New Era of Databases 
for Big data Analytics - Classification, Characteristics and Comparison. 
International Journal of Database Theory and Application. 2013; 6: 1-14.

19.	Lith A, Mattson J. Investigating storage solutions for large data, Master thesis, 
Department of Computer Science and Engineering, Chalmers University of 
Technology, Sweden. 2010.

20.	Pattuk E, Kantarcioglu M, Khadilkar V, Ulusoy H, Mehrotra S. "BigSecret: 
A Secure Data Management Framework for Key-Value Stores," IEEE Sixth 
International Conference on Cloud Computing. 2013; 147-154.

21.	Derbeko P, Dolev S, Gudes E, Sharma S. "Security and Privacy Aspects 
in MapReduce on Clouds: A Survey," Computer Science Review. 2016; 20: 
1-28.

22.	Martin-Sanchez F, Verspoor K. Big Data in Medicine Is Driving Big Changes. 
Yearbook of Medical Informatics. 2014; 9: 14-20.

23.	Kwakye M. A Practical Approach to Merging Multidimensional Data Models, 
Master thesis, School of Electrical Engineering and Computer Science, 
University of Ottawa, Canada, 2011.

24.	Chen J, Chen Y, Du X, Li C, Lu J, Zhao S. ‘Big data challenge: a data 
management perspective’, Frontiers of Computer Science. 2013; 7: 157-164.

https://link.springer.com/article/10.1007/s11036-013-0489-0
https://link.springer.com/article/10.1007/s11036-013-0489-0
https://ieeexplore.ieee.org/document/7047725/
https://ieeexplore.ieee.org/document/7047725/
https://ieeexplore.ieee.org/document/7047725/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287084/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287084/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287084/
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.ncbi.nlm.nih.gov/pubmed/22718035
https://www.ncbi.nlm.nih.gov/pubmed/22718035
https://www.ncbi.nlm.nih.gov/pubmed/22718035
https://www.valueinhealthjournal.com/article/S1098-3015(12)04170-8/abstract
https://www.valueinhealthjournal.com/article/S1098-3015(12)04170-8/abstract
https://www.hindawi.com/journals/bmri/2015/639021/
https://www.hindawi.com/journals/bmri/2015/639021/
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2014.063835
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2014.063835
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2014.063835
http://shop.oreilly.com/product/0636920033196.do
http://shop.oreilly.com/product/0636920033196.do
http://shop.oreilly.com/product/0636920033448.do
http://shop.oreilly.com/product/0636920033448.do
https://www.ncbi.nlm.nih.gov/pubmed/23190475
https://www.ncbi.nlm.nih.gov/pubmed/23190475
https://pdfs.semanticscholar.org/e602/d04acec9021efc97bf575e38ac1f4905b997.pdf
https://pdfs.semanticscholar.org/e602/d04acec9021efc97bf575e38ac1f4905b997.pdf
https://pdfs.semanticscholar.org/e602/d04acec9021efc97bf575e38ac1f4905b997.pdf
https://www.hindawi.com/journals/bmri/2014/134023/
https://www.hindawi.com/journals/bmri/2014/134023/
https://www.hindawi.com/journals/bmri/2014/134023/
https://arxiv.org/abs/1307.0191
https://arxiv.org/abs/1307.0191
https://arxiv.org/abs/1307.0191
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
https://ieeexplore.ieee.org/document/6676689/
https://ieeexplore.ieee.org/document/6676689/
https://ieeexplore.ieee.org/document/6676689/
https://arxiv.org/abs/1605.00677
https://arxiv.org/abs/1605.00677
https://arxiv.org/abs/1605.00677
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287083/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287083/
https://link.springer.com/article/10.1007/s11704-013-3903-7
https://link.springer.com/article/10.1007/s11704-013-3903-7


Citation: Chrimes D, Kuo MH, Moa B and Kushniruk AW. Interactive Big Data 
Analytics Platform for Healthcare and Clinical Services. SM J Biometrics Biostat. 
2018; 3(2): 1030. Page 15/16

Gr   upSM Copyright  Chrimes D

25.	Leeper NJ, Bauer-Mehren A, Iyer SV, Lependu P, Olson C, Shah NH, 
Practice-based evidence: profiling the safety of cilostazol by text-mining of 
clinical notes’. PloS One. 2013; 8: e634991- e634998.

26.	Lependu P, Iyer SV, Fairon C, Shah NH. ‘Annotation analysis for testing 
drug safety signals using unstructured clinical notes’. Journal of Biomedical 
Semantics. 2012; 3: S5.

27.	Raghupathi W, Raghupathi V. "Big data analytics in healthcare: promise and 
potential," Health Information Science and Systems. 2014; 2: 3.

28.	Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP, “Computational 
solutions to large-scale data management and analysis,” Nature Reviews. 
2010; 11: 647-657.

29.	Deepthi K, Anuradha K. "Big data Mining Using Very-Large-Scale Data 
Processing Platforms," International journal of engineering research and 
applications. 2016; 6: 39-45. 

30.	Hashmi A, Ahmad T. "Big Data Mining: Tools & Algorithms," International 
Journal of Recent Contributions from Engineering, Science & IT. 2016; 4. 

31.	Zhang YP "i2 MapReduce: Incremental MapReduce for Mining Evolving Big 
Data," IEEE Transactions on Knowledge and Data Engineering. 2015; 27: 
1906-1919.

32.	Narawade R, Jadhav V. "Data Mining of Big Data: The Survey and Review," 
International Journal of Innovations in Engineering and technology. 2015; 6: 
248-252.

33.	Vaidya DP, Deshpande SP, "Parallel Data Mining Architecture for Big Data," 
International Journal of Electronics, Communication and Soft Computing 
Science and Engineering. 2015; 208-213.

34.	Wu X, Zhu X, Wu GQ, Ding W, "Data Mining with Big Data," IEEE Transactions 
on Knowledge and Data Engineering. 2014; 26: 97-107.

35.	Mohammed EA, Far BH, Naugler C. “Applications of the MapReduce 
programming framework to clinical big data analysis: current landscape and 
future trends,” BioData Mining. 2014; 7: 1-23.

36.	Marozzo F, Talia D, Trunfio P. "P2P-MapReduce: Parallel data processing in 
dynamic cloud environments," Journal of Computer and System Sciences. 
2012; 78: 1382-1402.

37.	Taylor RC, "An overview of the Hadoop/MapReduce/HBase framework and 
its current applications in bioinformatics," BMC Bioinformatics. 2010; 11: 1-6.

38.	Langkafel P. Big Data in Medical Science and Healthcare Management: 
Diagnosis, Therapy, side Effects. De Gruyter. 2016. 

39.	Sakr S, Elgammal A. "Towards a comprehensive data analytics framework for 
smart healthcare services," Big Data Research. 2016; 4: 44-58.

40.	Chang RS, Liao CS, Fan KZ, Wu CM. "Dynamic Deduplication Decision in a 
Hadoop Distributed File System," International Journal of Distributed Sensor 
Networks. 2014; 2014: 1-14.

41.	Madsen LB. Data-Driven healthcare: how analytics and BI are transforming 
the industry. Jon Wiley and Sons. 2014. 

42.	Raghupathi W, Raghupathi V, "Big data analytics in healthcare: promise and 
potential," Health Information Science and Systems. 2014; 2: 1-10.

43.	ZooKeeper, “ZooKeeper - Apache Software Foundation project home page,” 
2016.

44.	Sitto K, Presser M. Field Guide to Hadoop - An Introduction to Hadoop, Its 
Ecosystem, and Aligned Technologies, O’Reilly Media, San Francisco, CA, 
2015.

45.	Dunning T, Friedman E, Shiran T, Nadeau J, Apache-Drill, O’Reilly Media, 
San Francisco, CA. 2016.

46.	Jurney R. Agile Data Science: Building Data Analytics Applications with 
Hadoop, O’Reilly Media, San Francisco, CA. 2013.

47.	WestGrid. 2016.

48.	Benaloh J, Chase M, Horvitz E, Lauter K. "Patient Controlled Encryption: 

Ensuring Privacy of Electronic Medical Records,"Proc. ACM Workshop on 
Cloud Computing Security. 2009; 103-114.

49.	Chrimes D, Kuo MH, Moa B, Hu W. Towards a Real-time Big Data Analytics 
Platform for Health Applications. Int J Big Data Intel. 2016; 4.

50.	Chrimes D, Moa B, Zamani H, Kuo MH. “Interactive Healthcare Big Data 
Analytics Platform under Simulated Performance,” IEEE 14th Int. Conf. 
Dependable, Autonomic and Secure Computing, Pervasive Intelligence and 
Computing, 2nd Intl. Conf. on Big Data Intelligence and Computing and Cyber 
Science and Technology Congress. 811-818.

51.	Xu J, Shi M, Chen C, Zhang Z, Fu J, Liu CH. “ZQL: A unified middleware 
bridging both relational and NoSQL databases,” IEEE 14th Int. Conf. 
Dependable, Autonomic and Secure Computing, Pervasive Intelligence and 
Computing, 2nd Intl. Conf. on Big Data Intelligence and Computing and Cyber 
Science and Technology Congress. 2016; 730-737.

52.	Yang CT, Liu JC, Hsu WH, Chu WCC. “Implementation of data transform 
method into NoSQL database for healthcare data,” International Conference 
on Parallel and Distributed Computing, Applications and Technologies. 2013. 

53.	Wang Y, Goh W, Wong L, Montana G. “Random forests on Hadoop for 
genome- wide association studies of multivariate neuroimaging phenotypes,” 
BMC Bioinformatics. 2013; 14: 1-15.

54.	Wang S, Pandis I, Wu C, He S, Johnson D, Emam I, et al. “High dimensional 
biological data retrieval optimization with NoSQL technology,” BMC 
Genomics. 2014; 15: S3.

55.	Scott J. “Apache Spark vs. Apache Drill. Converge Blog, Powered by MapR.,” 
2015.

56.	Nishimura S, Das S, Agrawal D, Abbadi AE. MD-HBase: design and 
implementation of an elastic data infrastructure for cloud-scale location 
services. Distributed and Parallel Databases. 2013; 31: 289-319.

57.	Nguyen AV, Wynden R, Sun Y. “HBase, MapReduce, and Integrated Data 
Visualization for Processing Clinical Signal Data,” AAAI Spring Symposium: 
Computational Physiology. 2011.

58.	Sun J. “Scalable RDF store based on HBase and MapReduce,” Advanced 
Computer Theory and Engineering (ICACTE), 3rd Int. Conf., Hangzhou, 
China. 2013; 20-22.

59.	Chawla NV, Davis DA. “Bringing Big Data to Personalized Healthcare: A 
Patient- Centered Framework,” J Gen Intern Med. 2013; 28: S660-S665.

60.	Sullivan PO, Thompson G, Clifford A. “Applying data models to big data 
architectures,” IBM J Res & Dev 2014; 58: 1-12.

61.	Freire SM, Teodoro D, Wei-Kleiner F, Sundsvall E, Karlsson D, Lambrix P. 
“Comparing the Performance of NoSQL Approaches for Managing Archetype-
Based Electronic Health Record Data,” PLoS One. 2016; 11: e0150069. 

62.	Frey LJ, Lenert L, Lopez-Campos G. “EHR Big Data Deep Phenotyping 
Contribution of the IMIA Genomic Medicine Working Group,” Year Med 
Inform. 2014; 15: 206-211.

63.	Mayer-Schönberger V, Cukie K. Big data: A revolution that will transform how 
we live, work, and think, Houghton Mifflin Harcourt. 2013; 256.

64.	Chen Y, Alspaugh S, Katz R. “Interactive Analytical Processing in Big Data 
Systems: A Cross-Industry Study of MapReduce Workloads,” Proceedings of 
the VLDB Endowment. 2012; 5: 1802-1813.

65.	Greeshma AL, Pradeepini G. “Input split frequent pattern tree using 
MapReduce paradigm in Hadoop,” J. Theo. App. Inform. Tech. 2016; 84: 
260-271.

66.	Maier M. “Towards a Big Data Reference Architecturem,” MSc Thesis. 
Eindhoven University of Technology, Netherlands, 2013.

67.	Yu SC, Kao QL, Lee CR. “Performance Optimization of the SSVD 
Collaborative Filtering Algorithm on MapReduce Architectures,” IEEE 14th Int. 
Conf. Dependable, Autonomic and Secure Computing, Pervasive Intelligence 
and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and 
Cyber Science and Technology Congress. 2016; 612-619.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063499
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063499
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063499
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-3-S1-S5
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-3-S1-S5
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-3-S1-S5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.nature.com/articles/nrg2857
https://www.nature.com/articles/nrg2857
https://www.nature.com/articles/nrg2857
https://www.ingentaconnect.com/content/doaj/22489622/2016/00000006/00000002/art00042
https://www.ingentaconnect.com/content/doaj/22489622/2016/00000006/00000002/art00042
https://www.ingentaconnect.com/content/doaj/22489622/2016/00000006/00000002/art00042
https://pdfs.semanticscholar.org/37df/43d2bf7f313656b28873d109b5b4b5918164.pdf
https://pdfs.semanticscholar.org/37df/43d2bf7f313656b28873d109b5b4b5918164.pdf
https://pdfs.semanticscholar.org/37df/43d2bf7f313656b28873d109b5b4b5918164.pdf
https://ieeexplore.ieee.org/document/6547630/
https://ieeexplore.ieee.org/document/6547630/
https://www.ncbi.nlm.nih.gov/pubmed/25383096
https://www.ncbi.nlm.nih.gov/pubmed/25383096
https://www.ncbi.nlm.nih.gov/pubmed/25383096
https://www.sciencedirect.com/science/article/pii/S0022000011001668
https://www.sciencedirect.com/science/article/pii/S0022000011001668
https://www.sciencedirect.com/science/article/pii/S0022000011001668
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-S12-S1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-S12-S1
https://www.degruyter.com/viewbooktoc/product/462711
https://www.degruyter.com/viewbooktoc/product/462711
https://pdfs.semanticscholar.org/presentation/3017/7dd880ca67683d18b3d4c20040e3452021f1.pdf
https://pdfs.semanticscholar.org/presentation/3017/7dd880ca67683d18b3d4c20040e3452021f1.pdf
http://journals.sagepub.com/doi/full/10.1155/2014/630380
http://journals.sagepub.com/doi/full/10.1155/2014/630380
http://journals.sagepub.com/doi/full/10.1155/2014/630380
https://www.wiley.com/en-us/Data+Driven+Healthcare%3A+How+Analytics+and+BI+are+Transforming+the+Industry-p-9781118772218
https://www.wiley.com/en-us/Data+Driven+Healthcare%3A+How+Analytics+and+BI+are+Transforming+the+Industry-p-9781118772218
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.westgrid.ca/about_westgrid/what_we_do
http://erichorvitz.com/ccsw_2009_benaloh_chase_horvitz_lauter.pdf
http://erichorvitz.com/ccsw_2009_benaloh_chase_horvitz_lauter.pdf
http://erichorvitz.com/ccsw_2009_benaloh_chase_horvitz_lauter.pdf
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2017.083131
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2017.083131
https://ieeexplore.ieee.org/document/7588938/
https://ieeexplore.ieee.org/document/7588938/
https://ieeexplore.ieee.org/document/7588938/
https://ieeexplore.ieee.org/document/7588938/
https://ieeexplore.ieee.org/document/7588938/
https://ieeexplore.ieee.org/document/7588927/
https://ieeexplore.ieee.org/document/7588927/
https://ieeexplore.ieee.org/document/7588927/
https://ieeexplore.ieee.org/document/7588927/
https://ieeexplore.ieee.org/document/7588927/
https://ieeexplore.ieee.org/document/6904255/
https://ieeexplore.ieee.org/document/6904255/
https://ieeexplore.ieee.org/document/6904255/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S16-S6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S16-S6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S16-S6
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-S8-S3
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-S8-S3
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-S8-S3
https://mapr.com/blog/apache-spark-vs-apache-drill/
https://mapr.com/blog/apache-spark-vs-apache-drill/
https://link.springer.com/article/10.1007%2Fs10619-012-7109-z
https://link.springer.com/article/10.1007%2Fs10619-012-7109-z
https://link.springer.com/article/10.1007%2Fs10619-012-7109-z
https://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2479
https://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2479
https://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2479
https://ieeexplore.ieee.org/document/5578937/
https://ieeexplore.ieee.org/document/5578937/
https://ieeexplore.ieee.org/document/5578937/
https://www.ncbi.nlm.nih.gov/pubmed/23797912
https://www.ncbi.nlm.nih.gov/pubmed/23797912
https://ieeexplore.ieee.org/document/6964875/
https://ieeexplore.ieee.org/document/6964875/
Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data,
Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data,
Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data,
https://www.ncbi.nlm.nih.gov/pubmed/25123744
https://www.ncbi.nlm.nih.gov/pubmed/25123744
https://www.ncbi.nlm.nih.gov/pubmed/25123744
https://academic.oup.com/aje/article/179/9/1143/2739247
https://academic.oup.com/aje/article/179/9/1143/2739247
https://arxiv.org/abs/1208.4174
https://arxiv.org/abs/1208.4174
https://arxiv.org/abs/1208.4174
http://www.jatit.org/volumes/Vol84No2/12Vol84No2.pdf
http://www.jatit.org/volumes/Vol84No2/12Vol84No2.pdf
http://www.jatit.org/volumes/Vol84No2/12Vol84No2.pdf
https://ieeexplore.ieee.org/abstract/document/7588910/
https://ieeexplore.ieee.org/abstract/document/7588910/
https://ieeexplore.ieee.org/abstract/document/7588910/
https://ieeexplore.ieee.org/abstract/document/7588910/
https://ieeexplore.ieee.org/abstract/document/7588910/


Citation: Chrimes D, Kuo MH, Moa B and Kushniruk AW. Interactive Big Data 
Analytics Platform for Healthcare and Clinical Services. SM J Biometrics Biostat. 
2018; 3(2): 1030. Page 16/16

Gr   upSM Copyright  Chrimes D

68.	Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health 
records. J Am. Med. Inform. Assoc. 2013; 20: 117-121.

69.	Wang F, Lee R, Liu Q, Aji A, Zhang X, Saltz J. “Hadoop-GIS: A high 
performance query system for analytical medical imaging with MapReduce,” 
In: Atlanta-USA: Technical Report, Emory University. 2011; 13: 1-13.

70.	Markonis D, Schaer R, Eggel I, Müller H, Depeursinge A. “Using MapReduce 
for large-scale medical image analysis,” Healthcare Informatics, Imaging and 
Systems Biology (HISB), IEEE Second International Conf. La Jolla, CA, USA, 
September. 2012; 28: 1-10.

71.	Rabkin A, Katz RH. “How Hadoop Clusters Break,” IEEE Software, July/
August. 2013; 88-95.

72.	Moise D, Trieu TTL, Bouge L, Antoniu G. “Optimizing intermediate data 
management in MapReduce computations.” Proceedings of the first 
international workshop on cloud computing platforms, ACM. 2011; 1-7.

73.	Ruan G, Zhang H, Plale B. “Exploiting MapReduce and data compression 
for data-intensive applications.” Proceedings of the Conference on Extreme 
Science and Engineering Discovery Environment: Gateway to Discovery, 
ACM. 2013; 1-8.

74.	Xue Z, Shen G, Li J, Xu Q, Zhang Y, Shao J. “Compression aware i/o 
performance analysis for big data clustering.” Proceedings of the 1st 
International Workshop on Big Data, Streams and Heterogeneous Source 
Mining: Algorithms, Systems, Programming Models and Applications, ACM. 
2012; 45-52.

75.	Wang Y, Xu C, Li X, Yu W. “JVM-bypass for efficient Hadoop shuffling.” In: 
IEEE 27th International Symposium on Parallel & Distributed Processing 
(IPDPS). 2013; 569-578.

76.	Yu W, Wang Y, Que X, Xu C. “Virtual shuffling for efficient data movement in 
MapReduce.” IEEE Transactions on Computers. 2015; 64: 556-568.

77.	Yan D, Yin XS, Lian C. “Using memory in the right way to accelerate big data 
processing.” Journal of Computer Science and Technology. 2015; 1; 30-41.

78.	Ahmad F, Chakradhar ST, Raghunathan A, Vijaykumar T. “Shufflewatcher: 
Shuffle-aware scheduling in multi-tenant MapReduce clusters.” Proceedings 
of the USENIX conference on USENIX Annual Technical Conference. 
USENIX Association, 2014; 1-12.

79.	Nabavinejad SM, Goudarzi M, Mozaffari S. “The Memory Challenge in Reduce 
Phase of MapReduce Applications,” J. Latex Class Files. Transactions on Big 
Data IEEE. 2016. 14.

80.	Chung WC, Lin HP, Chen SC, Jiang MF, Chung YC. “JackHare: a framework 
for SQL to NoSQL translation using MapReduce,” Autom. Softw. Eng. 2014; 
21: 489-508.

81.	Dutta H, Demme J. Distributed Storage of Large Scale Multidimensional EEG 
Data using Hadoop/HBase, Grid and Cloud Database Management, New 
York City: Springer. 2011.

82.	Dean J, Ghemawat S. “MapReduce: A Flexible Data Processing Tool,” 
Comm. ACM. 2010; 53: 72-77.

83.	Moselle K. “Data Management in the Island Health Secure Research 
Environment,” Enterprise Architecture at Vancouver Island Health Authority, 
Working Draft 5, Victoria, BC. 2015.

84.	Dufresne Y, Jeram S, Pelletier A. “The True North Strong and Free 
Healthcare? Nationalism and Attitudes Towards Private Healthcare Options 
in Canada.” Canadian Journal of Political Science. 2014; 47: 569-595.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555337/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555337/
https://arxiv.org/abs/1510.06937
https://arxiv.org/abs/1510.06937
https://arxiv.org/abs/1510.06937
https://arxiv.org/abs/1510.06937
https://ieeexplore.ieee.org/document/6216347/
https://ieeexplore.ieee.org/document/6216347/
https://dl.acm.org/citation.cfm?id=1967427
https://dl.acm.org/citation.cfm?id=1967427
https://dl.acm.org/citation.cfm?id=1967427
https://ieeexplore.ieee.org/document/6569843/
https://ieeexplore.ieee.org/document/6569843/
https://ieeexplore.ieee.org/document/6569843/
https://ieeexplore.ieee.org/document/6671574/
https://ieeexplore.ieee.org/document/6671574/
https://link.springer.com/article/10.1007/s11390-015-1502-9
https://link.springer.com/article/10.1007/s11390-015-1502-9
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ahmad.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ahmad.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ahmad.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ahmad.pdf
https://www.deepdyve.com/lp/springer-journals/jackhare-a-framework-for-sql-to-nosql-translation-using-mapreduce-NTVEhcm806
https://www.deepdyve.com/lp/springer-journals/jackhare-a-framework-for-sql-to-nosql-translation-using-mapreduce-NTVEhcm806
https://www.deepdyve.com/lp/springer-journals/jackhare-a-framework-for-sql-to-nosql-translation-using-mapreduce-NTVEhcm806
https://pdfs.semanticscholar.org/e847/8441e8e57add396a9e6d2ddfd86a3a85278f.pdf
https://pdfs.semanticscholar.org/e847/8441e8e57add396a9e6d2ddfd86a3a85278f.pdf
https://pdfs.semanticscholar.org/e847/8441e8e57add396a9e6d2ddfd86a3a85278f.pdf
https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/
https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/
https://www.cambridge.org/core/journals/canadian-journal-of-political-science-revue-canadienne-de-science-politique/article/the-true-north-strong-and-free-healthcare-nationalism-and-attitudes-towards-private-healthcare-options-in-canada/7EBC0D0A1D72D716E40
https://www.cambridge.org/core/journals/canadian-journal-of-political-science-revue-canadienne-de-science-politique/article/the-true-north-strong-and-free-healthcare-nationalism-and-attitudes-towards-private-healthcare-options-in-canada/7EBC0D0A1D72D716E40
https://www.cambridge.org/core/journals/canadian-journal-of-political-science-revue-canadienne-de-science-politique/article/the-true-north-strong-and-free-healthcare-nationalism-and-attitudes-towards-private-healthcare-options-in-canada/7EBC0D0A1D72D716E40

	Title
	Abstract
	Introduction
	Literature Review
	Challenges in Big Data Analytics
	Big Data Technologies and Platform Services

	Design the Analytics Framework
	The Conceptual Analytics Framework
	Computational Platform
	The Data Process Pipeline

	Simulation
	Computing Platform and Configurations
	Data Emulation and Modeling
	Performance Evaluation

	Discussion
	Conclusion
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

