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Introduction
Anthropogenic- hybridization gives raise to conservation concerns

The harmful effects of human driven hybridization have given rise to conservation challenges 
surrounding many plant and animal taxa worldwide [1-3]. Genetic extinction may occur via the 
following processes: parental taxon extinction, reduced fitness, pure genetic lineage extinction, 
and/ or parental taxon displacement [4,5]. In fact, hybridization is especially problematic for rare, 
endangered, and endemic species that overlap with relatively abundant species [8,9]. We utilize 
the hybridization occurrences between the black wildebeest (Connochaetes gnou) and the blue 
wildebeest (Connochaetes taurinus) in South Africa to create a decision support tool for wildlife 
managers. Our choice of a case study reflects the scope of conservation concerns evolving from 
this problematic process; hybridization between the endemic black wildebeest and widespread blue 
wildebeest in South Africa poses a conservation threat to the genetic integrity of the former [10,11].

Historically, black wildebeest and blue wildebeest were allopatric; while the first core habitat was 
grasslands north of the Orange River, South Africa, the later can be found in open and bush-covered 
savanna habitats ranging from Central to Southern Africa [12,13]. However, recent intensive 
wildlife management practices, such as the translocation of black wildebeest populations, have 
resulted in the expansion of their distribution to extralimital habitats overlapping with that of blue 
wildebeest [8]. Their short evolutionary divergence enables hybridization to occur when overlapped. 
Fossil evidence indicates that they diverged from a common ancestor between 1- 2 million years 
ago, which did not allow for the development of reproductive isolation mechanisms [10,14,15]. As 
such, management practices that entail the juxtapositioning of species have implications for species’ 
genetic lineage conservation.

Ecosystem decision-making in the face of imperfect information

Wildlife and land managers are faced with an ongoing dilemma; on the one horn they need to 
intensely manage their wildlife populations with economic profitability in mind, while on the other 
uncertainties resulting from scarce or even a lack of, data and limited resources impose constraints 
on their ability to account for tradeoffs of various management decisions. Concurrently, genetic 
markers that distinguish pure parental species from hybrids are lacking, and qualitative data are 
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imprecise [10,11]. This, in turn, influences their ability to adopt 
informed decisions. One consequence is that many wildlife and land 
management decisions being “grandfathered in” and, as such, their 
efficiency is not reevaluated, possibly resulting in “Type III error” 
[16]. And yet, management decisions with potential implications on 
hybridization occurrences are made despite such lack of data [8,17].

There is a consensus on the need for a novel and integrated 
approach to foster adaptive management while maximizing economic 
efficiency and conservation effectiveness. A cohesive solution 
recognizes spillover effects of wildlife management decisions into 
other domains. Similar to other ecological concerns worldwide, such 
guidelines need to be broad enough to ensure the conservation of the 
wildebeest on a metapopulation (i.e., on a national scale), yet specific 
enough to account for the objectives of individual stakeholders. 
Bayesian Networks (BN) allow for such seemingly competing model 
objectives. 

The underutilization of BNs within the ecological discipline 

Bayesian modeling is widely applied to inference probabilistic 
representations of uncertain knowledge in various fields including 
industrial, government, artificial intelligence, and medical [18-20]. 
However, only 4.2% of environmental studies utilized BNs during 
1990-2010, indicating that BNs ability to deconstruct complexities and 
infer and predict trade-offs within the ecological and environmental 
discipline remains underexploited [21-23]. Despite their efficiency 
on modeling multi-faceted ecological processes leading to informed 

decision making [24-26]. In this study, we put forth the notion that 
Bayesian modeling stages correspond to integrated environmental 
stages and therefore, are applicable to model environmental and 
ecological complexities (Figure 1).

These correspond to modeling procedures and outcomes written 
in gray rectangles. Highlighted green boxes list corresponding 
stages in integrated environmental modeling semantics. Ovals list 
disciplinary usage and arrows indicate modeling objective utilization 
or disciplinary applicability. 

Applicability of Bayesian belief networks to the ecological 
discipline

Applying BNs to articulate ecological problems is a relatively 
new concept; this may be in part because deriving the networks’ 
structure while considering multiple-field domains, and populating 
it with expert knowledge is difficult and time consuming [27-29]. 
BNs enable modelers to address ecological challenges within the 
following working framework: problem statement identification, 
system conceptualization, information synthesis, adapting problem 
statement and management scenarios, and policy development 
(Figure 1). These steps correspond to the following processes in BN 
terminology:A priori information, supervised and unsupervised 
learning (i.e., parameter learning, data clustering, variable clustering, 
probabilistic representation modeling, causal-effects analysis, 
predictability, and target optimization), knowledge engineering, and 
Bayesian updating (Figure 1).

Figure 1: A continuum of Bayesian Networks’ usage. Four primary modeling stages denoted by Q1234.
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Goals, objectives, and outline

This study illustrates the advantages in applying Bayesian 
modeling to the conservation discipline by considering wildebeest 
hybridization drivers and facilitators within their contextual ecological 
complexity. We show that Bayes’ methods simulate alternate “real-
world” scenarios, and argue that in their absence, decision makers 
make management decisions with incomplete information. Decision 
Support Systems (DSSs) are strategic frameworks designed to assist the 
decision maker in the decision-making process [30]. These networks 
are ultimately used as (DSSs) by wildlife and land stakeholders in 
South Africa. And because hybridization is accelerating worldwide, 
OOBNs serve to inform decisions globally. Thus, enabling knowledge 
generators and users to better understand “real-world” ecosystem 
complexity and interlinkage.

Our objectives are as follows: (1) to provide a working 
understanding of how expert knowledge may be utilized to advance 
informed decisions, (2) to identify key parameters that facilitate 
wildebeest hybridization; (3) to provide an abstract visualization 
that conceptualizes the multifaceted complexity, (4) to infer 
the relationships amongst parameters and domains, and (5) to 
provide DSS that identify risk assessment and wildlife management 
implications. 

Our paper is subdivided as follows: First, we provide contextual 
reasoning for BN applicability to ecological problems in a background 
(section 2). By including concise explanations we increase the 
understanding of knowledge generation and slicing. We then 
offer detailed methods (section 3) that may be used as a stepwise 
guideline procedural framework to be duplicated and address similar 
ecological complexities elsewhere. This decreases the learning curve 
and computational expenses. Finally, we list our findings (section 4), 
discussion (section 5), and conclusions (section 6).

Background
Uncertainty inference

Bayesian inferences future uncertainties by calculating how 
probable specific events are and how these probabilities change 
contingent on every possible combination of values of parent 
nodes (i.e., a prioriknowledge of previous events), or given external 
interventions (i.e., posterior probabilities) [20,31-33]. Furthermore, 
uncertainty resulting from stochasticity and inference is accounted 
for by marginalization rather than a point estimate [34].The joint 
distribution of the training data, model, and observation θ, is 
conceptualized as follows: 

						                 (1)

Bayes’ rule calculates the posterior distribution by combining the 
likelihood of P (D|θ) with a priori information, as follows:

  			             			              
(2)

Note: P denotes a set of immediate causes of parameters. 

θ denotes the vector of the functional parameters linked to P, 
while D represents data.

Hence, the posterior is proportional to the likelihood of a priori 
data, therefore producing a derivative:

 			               			              
(3)

Learning parameter from incomplete data

Probabilities incorporate the conditional probability function 
arguments as random variables and the product of parameter learning 
is an estimate of conditional probability corresponding to nodes that 
maximize the likelihood function [35]. 

To use Bays terminology, the set of parameters quantifying θ is 
learned from the data, so that the likelihood of the data results from 
the modeled joint distribution is maximized. This is written as:

 						    
						                (4)

The ith training parameter is denoted by xi .

The Maximum (log) Likelihood (ML) is a learning approximate 
which maximizes the likelihood of the data given the model (L(θ)). 
ML quantify the probability of a parameter (p(xi)) given the training 
data (D) as follow: ( ) ( )MLp p xDχ ≈ θ . However, plugging in negative 
log likelihoods have the same effect as minimizing error functions, 
therefore solving for the likelihood derivative (log-likelihood) 
function is more user friendly. 

           						                (5)

The Product of learning is Conditional Probability Tables 
(CPT)

Causal links amongst discrete variables are quantified using 
Conditional Probability Tables (CPTs); given parents` state, the 
possibility that a child node will be in the roam of each possible 
state is calculated according to its observed frequency [32]. An 
a prioridistribution is needed, in order to avoid a possible zero 
probability assigned to a possible outcome. 

CPTs may be populated from two sources: (1) data driven 
parameterization through machine learning, or (2) knowledge 
elicitation from experts. Discrete variables encode probabilities 
which are the model probabilities themselves. A priori data may be 
categorical or quantifiable [31,33]. 

Parameterization learning for a child node (denoted θ) with 
Parent nodes (denoted D) and a number of states (denoted Sθ) may 
be expressed as follow:

However, the number of parameters increases exponentially, 
resulting in an expensive computational exercise. For instance, 

( ): (example|data) = (example|model) * (model|data)p p p pθ
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a situation in which there are variables with n parents, and each 
variable has two states, 2n independent parameters is needed in 
order to specify its CP. This disadvantage is solvable by applying 
Noisy functions, serving as weighted models [34,35]. Noisy-OR 
is a probabilistic extension that generates CPs for an observation 
occurring (denoted by Y=1), across n binary nodes, as follows:

 						                 (7)

Alternatively, the Noisy-MAX is applicable to multivalued 
parameters, which assumes that Y has nystates [34,35]. The joint 
probability is written as follows:

 

						                 (8)

Bayesian advantage over other environmental models

Bi-Directional flow: CPTs’ primary advantage is a product of its 
independence: (1) models can be updated easily when data become 
available or policy change is needed and (2) the distribution can be 
populated using optimal information available for a specific node. This 
enables decision makers to choose the level of confidence and detail 
they require to make decisions [21]. Simply stated, by approaching 
Bayesian learning as an inference case, the training examples in the 
data itself are considered independent observations [32]. This is the 
source of the bi-directional flow. 

Bidirectional flow enables top down (i.e., diagnostic/optimization 
reasoning), and bottom up (i.e., predictive reasoning) approaches 
[36,37] (Figure 2). A posterior probability incorporates propagation 
of uncertainty; updating posterior probabilities when new data 
become available triggers an update of a priori values and therefore, 
is especially useful and applicable to the ecological field [37-39].

Notes: θ splits network into two disjoint continuums, assuming 
independence. D1, D2 denote a priori evidence and serve as parent 
nodes to the child node denoted θ. Which in turn, serves as the parent 
node for θ1 and θ2.

The bi-directional propagation of new evidence and revision 
of each random variable is enabled by Pearl`s Bi-directional belief 

updating algorithm (PB). Mechanistically, new data is fused and 
propagates the resulting impact throughout the network by a belief 
vector constant of axioms of probability theoremfield [40,41]. 
Downward propagation is enabled by JPD calculations: the probability 
distribution quantification of all child nodes correlating to that of 
parent nodes, is a function of the BN structure and CPT field [36]. 
In the example below, the objective is to infer local computation for a 
single node (denoted by θ) in the schematic illustration above (Figure 
2); after receiving the vector π(e+) updated information from parent 
node D1, node θ will send to its child node θ1 updated information. 
This is written as follows:

						                 (9)

Where ( )π θ
 

is multiplied by the congruent product of the 
likelihood matrix (LM) (I.e., the conditional probability distribution 
matrix between θ and D1).

Upward propagation is enabled by setting desired nodes to a 
certain probability, and then evaluating their impact on probability 
distributions of child nodes [28].

If we continue with the same example from Figure 2, after 
receiving the vector λ(e-) with updated information from child node 
θ1, parent node θ will send to its parent node D1 information. This is 
written as follows: 

  						               (10) 

Similarly to the vector π (θ), λ(θ) is multiplied by the congruent 
product of the LM between θ1 and θ. 

Moreover, posterior updates usually entail that a node receive 
information from multiple child nodes (i.e., multiple λ(e-) vectors). PB 
is proportional to the size of CPT and accounts for such complexity 
[33]. It computes BEL (θ), an additional vector that ensures that 
all information is congruent, thereby eliminating the possibility of 
accounting for specific information multiplue times [40].

 						                 (7)

This bidirectional nature of BNs may provide advantages 
when modeling ecological complexities. Posterior updates enable 
decision makers to modify their networks to specifically model 
personalized objectives and to examine the effect of various decisions 
in a controlled in vitro environment before employing them in vivo 
(thereby promoting resource maximization and theoretical research, 
and allowing informed decisions). Wildlife managers can choose an 
optimized management practice and update CPTs as data become 
available so that networks remain a useful tool that reflects adaptive 
management. Bottom-up predictions are ideal for evaluating impact 
and management strategy analysis, while top-down predictions are 
ideal for identifying relevant parameters [32].

Figure 2: Schematic visualization of informational flow and Pearl’s                 
Bi-directional belief updating propagation.
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Simplified conceptualization: Borsuk et al. [41] suggest that BNs 
incorporate a series of advantages over other environmental 
models and support systems. Mainly, their graphical structure 
explicitly represents a cause-effect relationship among parameters 
that may be obscured in other approaches. stakeholders are 
able to conceptualize and evaluate interlinked relationships and 
management decision spillovers robustly via a Bayesian Conceptual 
Diagram (BCD) and a Directed acyclic graph (DAG); BCD provides 
a simplistic conceptualization of the query at hand while the DAG 
is the mathematical formulization in which nodes correspond with 
variables and arcs reflect qualitative dependence structure of various 
distributions [35,41].

Software
We used the software Netica [41], because it allows for 

sampling runs in real time, and the integration of confidence levels 
of stakeholders in their ability to accurately predict probabilistic 
reasoning. Netica has an identical interface for Windows and 
Mac, thereby enabling transferable code between these platforms. 
Application programmer interfaces include Java, C, C#, Com, C++, 
Matlab and CLisp. A free version is available which enabled the 
construction and evaluation of up to fifteen networks. Perching price 
ranges from individual use ($285) to commercial use ($785). Once 
the programmer defines the model structure given by experts, Netica 
utilizes EM algorithms to construct conditional probabilities from 
a given data set. Developer and contact address: Norsys Software 
Corp. 3512 West 23rd A venue, Vancouver, BC, Canada. (Tel. 
+1.604.221.2223, Fax. +1.604.221.2238). For enquiries: info@norsys.
com . First available in 1995. 

Methods
Study area

We surveyed South African game ranches that manage for 
black and blue wildebeest populations in four provinces: Limpopo, 
Mpumalanga, Gauteng, KwaZulu-Natal, and The Free State (Map 1).

Defining target node

Applying Bayesian modeling to ecological concerns is initiated 
by the definition of a target node (Figure 3). This provides focus for 
the modeler and clarity for the user. Genetic admixture is achieved 
in a finite population when hybrid individuals backcross into pure 
individuals and produce fertile offspring that behave in the same 
manner, and hybrids are not selected against [43]. This process is 
maintained by introgression and backcrossing [44] and can lead to 
the extinction of pure genetic lineages [45]. We define target nodes as 
hybridization, genetic admixture, or interspecies mating encounters. 

Peer reviewed data and expert knowledge generation

Prior to expert knowledge elicitation, we identified known 
drivers affecting the occurrence of ungulate hybridization utilizing 
the search engine Googlescholar and various combinations of the 
following keywords: conservation, ecology, hybridization, ungulate 
hybridization, wildebeest, and wildlife management (Figure 3). Local, 
provincial, and state wildlife management practices were additionally 
reviewed. 

68 stakeholders were surveyed during workshops about variables, 
parameters, and drivers that affect hybridization between black 
and blue wildebeest (Table 1). Expert knowledge served as a priori 
information, and the posterior probability reflected the probability 
that the black wildebeest and blue wildebeest will hybridize given 
different management scenarios. All stakeholders were users of 
knowledge and resources and were responsible for the decision-
making process that involves strategic planning and enforcing 
management plans. Although stakeholders varied in their objectives, 
all agreed on a need to produce user-friendly management tools to 
bridge the gap between scientific knowledge, land-use and game-
regulation needs, and private game-ranching objectives.

Map 1: Surveyed regions in South Africa. Red borders indicate provinces 
surveyed for expert knowledge. These include Limpopo, Mpumalanga, 
Gauteng, KwaZulu-Natal, and The Free State.

Figure 3:  Flow chart of OOBN construction. Stepwise actions highlighted 
in gray layers. Black arrows illustrate stepwise procedure. White arrows 
indicate modeling directionality, while products are in white boxes. Numbers 
in columns (4.2-4.7) correspond to explanatory sections in text.
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Structure modeling

We first identified domains and then constructed a BCD. We 
simultaneously developed DAGS and BNs, followed by two OOBNs 
(Figure 3). 

Domain identification and Bayesian Conceptual Diagram 
(BCD): We use parameters and variables interchangeably. Once 
a comprehensive list of hybridization facilitators, drivers and 
implications was agreed upon, we sought to identify domains. A 
domain is a cluster of parameters that share a commonality in 
structure or behavior, which provides a working interface for the 
programmer to interact with clusters of moving parts that differ in 
their predictability of hybridization, and to facilitate replication 
in similar ecological systems. In order to model their complexity 
effectively, we grouped these into three domains: biological, spatial, 
and market sectors. 

Once parameters and domain were identified, experts 
collaboratively developed a conceptual representation of the 
relationship between variables from the aforementioned biological, 
spatial, and market-based domains. Parameters that result in a non-
zero probability of hybridization occurrence were included. Initial 
BCD was presented to stakeholders for discussion and refinement. 
Parameters were revised, hidden, excluded, or included.

Directed Acyclic Graphs (DAGs) represent interlinkages: The BCD 
served as the basis for two plausible DAGs (Figure 4). We present 
them both to emphasize that the real world may be depicted in more 
than one manner.

Notes: (a) D represents a management practice (e.g., 20% 
increases in market demand for black wildebeest hunting). C and B 
represent biological and spatial management implications such as 
overstocking black wildebeest and not allowing for adequate wildlife 
fencing. A represents the probability of hybridization. 

Parameter Modeling

Parameter learning and BN construction provided the basis for 
OOBN construction (Figure 3). 

Parameterization: Acceptable ranges and probability distributions 
of different variables were elicited from experts and Max Log 
Likelihood and Noisy-MAX algorithms allowed to average different 
probability values for a given node and JPD to form CPTs. Because of 
the inherent variability of biological variables, experts were asked to 
consider intervals as 95% credible intervals (often incorrectly referred 
to as confidence intervals). This allows a parameter to have a state 
and quantifiable or categorical behavior. Thereby, its role within the 
complexity of relationships is identifiable. Finally, the parameter 

contains both knowledge and descriptions of its manipulation of the 
knowledge.

Construction of Bayesian belief networks: Expert knowledge 
provides a priori information, which is the basis for numerical or 
categorical values in a CPT. BCD and CPTs provided the platform 
for subnetwork structural development (Figure 3). We constructed 
BNs in three stages: (1) identify the set of parameters within specific 
domains that impact the probability of hybridization occurring 
between black and blue wildebeest, (2) identify the relationship 
among these parameters; and (3) apply CPT to quantify the links 
between parameters and define node states (i.e., the possible values 
that a variable can have). The latter stage transforms the BCD into a 
BN. We designed each BN to accurately represent a realistic snapshot 
of interactions that affect hybridization between the black wildebeest 
and blue wildebeest attributed to one of three domains: (1) biological, 
(2) spatial, or (3) market sectors. 

We utilized a BN fragment (subnetwork) to describe the 
probabilistic relationships between connections of a domain. These 
connections can themselves be objects, providing a natural framework 
for encoding part-of hierarchies. We allowed for 1000 simulated cases 
generated and factored 15% of missing data in Netica. Decision nodes 
and utility nodes are collapsed as suggested by Nielsen & Jensen, and 
Lemmer&Kanal [32,46]. For example, habitat cover availability is 
represented as a signal node in the OOBN but in the BN framework, 
it has three nodes: trees, prairie (i.e., savannah), and a combination of 
trees and prairie. Lastly, and in light of the nature of wildlife ranching, 
we accounted for wildebeest movement as an implied variable within 
the spatial connectivity node, rather than in the biological domain. 

Instance nodes served as interlinking nodes, providing a snapshot 
of the different BNs involved, thereby enabling their integration 

Figure 4: A skeleton Directed Acyclic Graphics (DAG) show a simplified 
representation of domains that act synergistically to facilitate hybridization 
between the black and blue wildebeest.

Table 1: List of surveyed stakeholders and their objectives. Stakeholders have a comprehensive understanding of the black wildebeest and blue wildebeest 
hybridization management and drivers.

Key stakeholders Objectives

Private game owners To manage population effectively while optimizing economic profit margins and maintaining viable populations

Private game managers To manage population effectively while optimizing economic profit margins and maintaining viable populations

Governmental officials To decrease hybridization rates

Scientists To evaluate the probability of hybridization and genetic admixture under various management scenarios

Note: Respective roles and specialties of governmental officials and scientists were within land/game regulation and enforcement, as well as large mammalian biology.
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and an accurate representation of the multilayered real-world 
conservation concern in the form of an OOBN. 

Validation and verification

Sensitivity to parameters and findings: We sought to determine 
whether the information generated might be altered by the structure 
of the model. Sensitivity to parameters was preformed by changing 
conditional probabilities and subsequently examined the accuracy 
and correlations in altered posterior probability distributions (Figure 
3).Sensitivity to findings was preformed by changing posterior 
probability distributions and subsequently examined the accuracy 
and correlations in altered conditional probabilities. Deviations from 
predictions would have indicated errors in the network structure 
or CPTs. We did not encounter the need to adjust for such errors. 
Finally, whereas previous studies have employed only one of these 
methods, we made our sensitivity analysis more robust by adopting 
both. 

Verification of values: As suggested by Pitchforth and Mengersen 
[47], we evaluate both content validity and predictive validity for 
expert-elicited BN validation. This enabled the production of a robust 
and accurate model. We sought to validate the knowledge engineering 
process and to enable posterior updates when data become available 
by “user validation”, as suggested by Woodberry et al. [48]. Structured 
reviews were preformed; experts were asked to assess whether BNs 
and OOBNs represent the complexity of the wildebeest hybridization 
conservation concern. We calibrated networks to reflect different 
management scenarios and market drivers, and posterior probabilities 
were evaluated. If these scenarios coincided and represented expert 
knowledge, we concluded that they were accurate.

OOBN as Decision tools

We constructed two OOBNs that vary in their scope according 
to their intended audience and objective (Figure 3). An overall 
OOBN provides decision makers with detailed information of which 
drivers and variables facilitate hybridization on their game ranches. 
The second OOBN was constructed by an additional process of 
identifying and interlinking instance nodes while treating the overall 
OOBN as the subnet. 

Results
Utilization of expert knowledge conceptualizes 
conservation problem and facilitates the identification of 
interlinked key domains and parameters

Key drivers for hybridization are clustered into following three 
domains: biological, spatial, and market industries. In addition, 
domains support inheritance of model fragments from a class to a 
subclass, allowing for the common aspects of related domains to be 
defined only once, enabling network fragments and expert knowledge 
to be used as the infrastructure of reusable probabilistic models that 
can be applied to multiple similar objects elsewhere. We utilized these 
domains as the infrastructure for informed decisions; stakeholders 
may decide to focus resources on one or more domains, while realizing 
spillover effects. Classifying nodes and states, and quantifying trade-
offs associated with hybridization between the black wildebeest 
and blue wildebeest, served as the basis for a Bayesian Conceptual 
Diagram (BCD) formulation (Figure 5).

Note that stochasticity resulting from disease was not modeled. 
Variables are clustered in domains: Blue outline clusters the biological 
domain, yellow outline clusters spatial domain, and green outline 
clusters market based domain. 

Based on expert knowledge, we believe that the BCD adequately 
represents the skeleton of causal relationships driving hybridization 
between the black and blue wildebeest. This abstract visualization 
provides wildlife managers with three utilizations: (1) to promote 
an understanding of which factors require attention when managing 
for hybridization occurrences, (2) to enable decision makers to 
choose the scope of their focus (i.e., one or more domains, thereby 
maximizing resources allocation), and (3) to identify spillover effects                   
(Figure 5). As such, the BCD, in itself, provides the platform upon 
which comprehensive management guidelines may be drawn; it 
illustrates the specific links through which hybridization may be 
induced, and following deductive logic, decreased. For example, 
market forces drive the biological or/and spatial management 
practices, which in turn act as drivers for market driver and have 
spillover effects on species composition and abundance, and suitable 
habitat availability. Specifically, BCD illustrates the interlinkage 
between the buy/sale market and shifts in interspecies bull ration via 
an increase in trophy individuals (Figure 5). 

Applying Bayes rule to quantify hybridization occurrences 

The cyclical nature of the BCD enabled us to formulate a 
DAGs tailored to the specific priorities and objectives of different 
stakeholders (Figure 3). We converted Bayes’ rule of probabilities 
(mainly formulas2, 3) to quantify the overall causal relationship 
among domains that affect wildebeest hybridization (formula 8,9). 
For example, let us denote two independent two market segments 

Figure 5: Bayesian conceptual diagram provides a simplified reflection of the 
multidimensional hybridization conservation concern. Note that stochasticity 
resulting from disease was not modeled. Variables are clustered in domains: 
Blue outline clusters the biological domain, yellow outline clusters spatial 
domain, and green outline clusters market based domain.
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(e.g., hunting and ecotourism) as M1 and M2, and the change in 
the biological domain (e.g., abundance) as B_(0→1) .This yields 
two hybridization probabilities (denoted by P1 and P2). This is 
approximated as follows: 

To formulate the probability of genetic admixture and 
hybridization (denoted by GA and Hy), we considered all domains (B 
denotes biological domain, M denotes market domain, and A denotes 
anthropogenic-driven spatial change). We simplified the DAG shown 
in Figure 3 (a). This corresponds to the following formula:

 						                 (9)

OR

 

Note: P(GA) is the prior probability, and the initial degree of 
belief in GA ( )0 1p Hy ,B,M,A GA→ is the conditional probability or 
likelihood, which represents the degree of belief in 0 1Hy , B,M,A→

given that proposition GA is true. 

( )0 1p GA Hy , B,M,A→ is the posterior probability, or the 
probability that GA is true after taking into account 0 1Hy , B,M,A→ for 
and against GA. 

Biological BN

We include the biological BN for the purpose of illustrating the 
complexity of a single domain. Additional BNs are not presented 
here; rather, we suggest that the process of OOBN construction as 
two wildlife management tools is more helpful for readers (Figures 
1-3). Male blue wildebeest to male black wildebeest ratio is the key 
biological variable associated with the probability of wildebeest 
hybridization (Figure 6). Notes: BN incorporates user-friendly nodes. 
For example, it simplifies the process for users because they know 
the number of introduced black wildebeest males, rather than the 
percentage of introduced black wildebeest males from the entire 
population. Moreover, BNs conduct evaluations given management 
scenarios. Therefore, introgression is assumed to result in admixture 
and swamping. Unforeseen shifts in species composition refers to 
survival rate (e.g., foot and moth disease). 

OOBN model predictions

OOBN provide a complete representation of the complexity of 
the hybridization phenomenon and its interlinking drivers, enabling 
transparency and tailored information according to varying objectives 
of different decision-making groups. The probability of hybrid 
swamp production is predicted primarily by a high ratio of blue male 
wildebeest to black male wildebeest in the biological domain, habitat 
connectivity availability in the spatial domain, and extractions or 
introductions of reproductive males following market forces in the 
market sector domain (Figures 6 and 7).

( ) ( ) ( ) ( ) ( )1 0 1 2 0 1 0 1 1 2 0 1 1 2M ,M M Mp p B p p B p B p B p→ → → →

( ) ( ) ( ) ( ) ( )0 1 0 1 0 1p GA Hy , p GA Hy p Hy B,A p B,M A P M AB,M,A→ → →=

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

0 1
0 1

0 1

0 1

p Hy ,B,M,A GA p B,M,A GA p M,A GA P A GA P GA
p GA Hy , ,

p Hy ,B,M,A GA

p Hy ,B,M,A GA 0

B,M,A →

→
→

→

=

≠

Figure 6: Bayesian belief network reflects interlinked variables in the biological domain. Nodes are titles and states are summarized. Arrows indicate causal 
relationships. Blue line suggests a mirror account for variables (i.e., all variables associated with blue wildebeest were additionally associated with black 
wildebeest).
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Notes: In order to preserve the integrity of market role, we 
included a node for culling. Uniformly distributed variables are based 
on numbers of wildebeest translocated (i.e., extracted or introduced) 
in specific nodes (i.e., private auctions, cull, ecotourism). The sum 
of probabilities equals 100% and as such, when certain scenarios are 
relevant (e.g., number of water holes), the probability of alternative 
scenarios is 0. 1000 case simulations were run, with a 15% missing 
data notation. Circles indicate three primary domains.

Tradeoffs of management scenarios: Netica report indicated that 
16547 conditional probability linkages were obtained and evaluated 
for possible fit (Figure 7). Expert knowledge constructed a scenario 
that entailed extractions primarily of reproductive age males, and an 
abundance favoring blue wildebeest, in addition to a high probability 
of sympatry (Figure 7). Experts advised that the combination of these 
factors represents the “worst-case scenario” for genetically pure 
black wildebeest populations. Specifically, OOBN indicates a strong 

Market Demand
Increase
Decrease

51.9
48.1

Reprodutive_Male_Blue/Black_W/B_Ratio 
Number of Blue Male WB
Number of Black Male WB

76.7
23.3

Degree of Connectivity
Complete Genetic Barrier
Partial Genetic Barrier
Absence of Genetic Barrier

   0
13.2
86.8

Interspecies_Breeding_Encounters
Hybridization
None hybridization

92.1
7.89

Figure 8: OOBN models ecosystem interactions encompassing “eagle’s-eye” detail and acts as a risk assessment tool for resource allocation maximization.

Figure 7: OOBN model mimics equalizing hierarchical subnetworks and serves as a management tool illuminating tradeoffs between domains.
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correlation between the purchase of both blue and black wildebeest 
trophy males (~18% in comparison to an even likelihood of all other 
categories within this node) and high probability of extraction both 
blue and black wildebeest trophy males (43.9%, 47.2%, compared 
to >6% of none trophy males) and low extraction of both blue and 
black wildebeest trophy males resulting from the market for meat 
export (>9% in comparison to none trophy males). We follow the 
logical that this is due to the high economic investment in buying 
trophy males from both species in auctions that results in the targeted 
diminished rate of return activity (i.e., meat export, ecotourism, and 
trophy hunting, respectively). Moreover, the spatial domain has 
three significant nodes impacting hybridization: complete fence, 
incomplete fence, and fence absent (Figure 7 and 8). A probability ~2:1 
for an absence of genetic barrier, together with only one waterhole 
on the grounds, yields sympatric conditions at a probability of 87.5% 
(Figure 7). Such a high probability of sympatry, coupled with male 
blue wildebeest to male black wildebeest ration of 81.6:18.4 resulted 
in a 91.7% probability of hybridization (Figure 7). 

OOBN as a rapid assessment tool: OOBN yield a 92.1 probability 
of hybridization if the male blue wildebeest to male black wildebeest 
ratio was approximately 2:1, and there was a probability of 86.8% of 
an absence of sufficient barrier to gene flow (Figure 8).

Notes: Market stability is reflected by market demand, referred 
to as the medium point of decrease and increase (i.e., 50). Moreover, 
we assume that the user’s intention is to assess the impact of shifts in 
a particular market sector on hybridization. The number of blue or 
black males is converted into a percentage; we argue that plugging in 
numbers is the most straightforward for users. 

Model verification

Pearls belief propagation algorithm enables verification via 
probabilistic inference uses new data [40,49]. We did not encounter 
conflicts. We note that genetic markers that distinguish pure bred 
blue wildebeest from pure bred black wildebeest, or from varying 
hybrid generations, have not yet been identified [10,11,15,17]. As 
such, we used segments of knowledge, which were not utilized in the 
construction process. We recommend additional verification analysis 
when data becomes available. 

Discussion
Environmental management mirrors Bayesian modeling 
stages

Efficient wildlife management cannot take place in a vacuum; it 
requires informed decisions that are within an ecosystem context. 
The multifaceted model structure described in this paper enabled 
a hierarchal breakdown and subdivision of a complex ecological 
system centered on a pressing conservation concern. Equally 
important, is that these stages correspond to procedures needed prior 
to the establishment and reevaluation of environmental, similar to 
ecological, modeling stages (Figure 1).

BCD and OOBNs highlight the need to address 
conservation concerns within an ecosystem context

The utilization of expert knowledge enables the construction of 
BCD and OOBNs. The BCD illustrates the importance of approaching 
the ecosystem as a whole by highlighting potentially deleterious 

implications of spillover effects when managing separately for domains 
(Figure 5). In addition, we provide a practical demonstration of how 
an OOBN model may be constructed and used as a DSS for wildlife 
managers (Figure 3). We emphasize that an efficient management 
plan designed to illuminate alternate management strategies that 
decrease wildebeest hybridization rates should consider biological, 
ecological, and market domains simultaneously. 

The utilization of DAGs and upwards propagation

DAGs formulation incorporates the hierarchy of domain and 
parameter interlinkages. DAGs may be tailored to the appropriate 
audience and objectives. For example, if the objective is to compare 
the tradeoffs of two management scenarios, decision makers may 
utilize formula 6. Alternatively, if the objective is to quantify the 
probability of complete genetic admixture, decision makers may 
utilize formulas 8,9. Whereas formula 6 is relevant to landowners 
and managers, formulas 8,9 is particularly relevant to researchers 
and policymakers. Additionally, optimizing wildlife management 
scenarios maybe interpreted via posterior propagation (Figure 
3). That is to say, probability of hybridization is impacted by black 
wildebeest relative abundance and wildlife fencing, which in turn are 
impacted by the hunting market sector. 

OOBNs act as Decision Support Systems (DSS)

Biological Domain: Hybridization occurs as a result of mating 
between blue wildebeest bulls and black wildebeest cows [10]. 
Wildlife management practices have resulted in a shift in each 
population composition and abundance [8]. A decrease in male 
black wildebeest abundance in conjunction with the stabilization or 
increase in male blue wildebeest abundance increases the probability 
of hybridization (Figure 7). The objective of wildlife managers should 
be to mimic the natural population dynamics. The optimal ratio of 
blue wildebeest males to black wildebeest males should be kept under 
0.5 to reverse stable hybridization occurrences and under 0.25 to 
make hybridization unlikely (Figures 6-8). A ratio of 1:1 indicates 
that hybridization would be maintained at an accelerating rate.

Spatial Domain and Regulations: Moreover, parapatric or 
sympatric conditions are largely due to economic profitability. 
The change in posterior probabilities for hybridization and genetic 
admixture proved the need to stabilize population dynamics that 
would mimic those found in finite populations that have continuous 
barriers to gene flow. In landscapes that are not altered by humans, 
black wildebeest are associated with trees/prairie landscapes, whereas 
blue wildebeest are found in prairie/tree landscapes [13]. Wildlife 
managers should aim for available suitable habitat, and an abundance 
of feeding grounds and waterholes, thereby decreasing the likelihood 
of intraspecies mating encounters. Moreover, structural barriers to 
gene flow may be the only solution to minimize intraspecies mating 
encounters and, as a result. Currently, regulations pose contingencies 
on acquiring buying, selling, and maintaining wildebeest individuals 
on adequate wildlife fencing. However, due to the high percentage 
of expert knowledge yielding the absence of complete fences as 
a plausible scenario, we caution about the efficacy of regulation 
enforcement and encourage that this be the focus of future research 
as suggested in previous papers [17,50].

Market Domain implications: We assumed that market variability 
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fell within the normal range. The effect of interventions in socio-
economic parameters was not found to be strong. The reasons are 
primarily twofold: (1) extreme market shifts were not considered 
because they are not likely to occur; and (2) to represent practical 
reality, the model considers the effect of slight market changes 
on shifts in population dynamics (i.e., species abundance and 
composition). We had no reason to assume that the market would 
fluctuate dramatically and therefore, did not simulate those options. 
However, if the market were to act in such an unpredictable 
manner, the application of multiple interventions would need to be 
implemented simultaneously.

A 10% increase in demand in the trophy-hunting sector could be 
deleterious to wildebeest hybridization rates because it would result 
in a shift in breeding behavioral dynamics. Under natural conditions, 
one bull may impregnate several cows [13]. However, the presence of 
multiple bulls in a confined area may shift this balance. we caution 
against the decision to convert or direct increased livelihood to 
trophy hunting.

The effect of ecotourism on wildebeest hybridization was 
unclear, indicating that ecotourism could serve either as a catalyst for 
hybridization or to decrease it. We attribute this confusing finding to 
the attitudes of the specific experts. The sector was found to minimize 
hybridization in cases in which experts empathized with the ethical 
value of pure breeds and to promote hybridization in cases in which 
experts perceived the ethics of pure breeding to be secondary to 
revenue. We suggest green marketing, in which ranches market 
themselves as outfitters that place a high value on ethical breeding, 
thereby making them green and attractive to conservation-aware 
clientele. 

OOBN enables risk assessment and tradeoff analysis

Bayesian networks promote adaptive management, thereby 
optimizing management efficiency related to conservation behavior. 
Consequently, the uncertainty presented at the time of modeling 
diminishes in light of new evidence and posterior updates [33,38]. 
After recalibrations, the collective expert understanding agreed that 
the proposed BN and OOBN model adequately reflect the complex 
real world. Thus, the use of interface nodes selected from individual 
BNs proved to be correct and efficient. Moreover, the development 
of a structured DSS for wildebeest population management is of high 
priority because it allows for more robust, informed, accountable, 
and strategic decisions in a setting in which quantitative data are 
scarce and modeling real-world complexity is limited. To quantify 
ecological uncertainty effectively, the widest appropriate a priori scale 
should be evaluated so that risks and management tradeoffs may be 
identified and prioritized. 

We provide two OOBNs that vary in their level detail so that 
their adoption as DSSs may be tailored to stakeholders’ objectives. 
We recognize that there is a need for posterior updating with data 
regarding hybrid individuals in order will increase model accuracy. 

Finally, we perceive that simplifying the process of using a 
management tool will increase the likelihood that it will be used as a 
DSS, thereby maximizing its impact. We therefore provide a detailed 
decision tree that allows stakeholders to apply the most relevant 
OOBN (Figure 9).

Notes: Resources primarily include budget, time, and manpower. 
Wildebeest reside in national parks and on private game ranches. 

Figure 9: Decision tree designed to maximize OOBN utilization by directing decision makers to the appropriate procedure and tool.
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As such, satisfactory probabilities of hybridization occurrences 
are defined by the model user, reflective of the objectives different 
stakeholders. 

This decision tree transforms OOBN from a foreign concept 
to a more user friendly and relevant tool, thereby increasing 
implementation and usage. Our first OOBN (i.e., Figure 7) provides 
wildlife managers with a DSS for a detail tradeoff analysis, while our 
proposed second OOBN (i.e., Figure 8) is offered as a risk assessment 
tool that maximizes resource allocation by allowing knowledge 
generators and users to assess the probability that their currently 
enforced management practices facilitate hybridization and are in 
need of restructuring and adaptation. 

The applicability of OOBNs as DSS is worldwide

We demonstrate that OOBNs illuminate decision-making 
tradeoffs, thus serving to promote informed decisions. Moreover, 
Bayesian modeling mimics the human cognitive thought process 
[51]. As such, the probability of it being employed is increased due 
to its intuitive nature. Equally important, we provide the much 
needed theoretical background and outlined the process of OOBN 
construction so that it may be used to address similar conservation 
concerns worldwide with relative ease. The bidirectional nature of 
OOBNs may be exploited (Figures 2 and 3); decision makers may 
plug in a zero probability of hybridization as a posterior probability 
and adopted a priori values as targeted objectives. 

OOBNs are utilized as DSSs to promote informed decisions 

Finally, in order for OOBNs to act as a DSS model, they must 
reasonably represent the outcome of different decisions [24,30]. 
Decision makers can then transform OOBNs into regional DSSs 
by simulations hypothetical scenarios with specific information 
(Figure 1). Our prototypes are practical and standardized decision-
making; they can be implemented elsewhere worldwide to address 
conservation issues stemming from similarly complex ecological and 
human dimension issues.

Conclusion

Bayesian modeling is applicable to decision-making processes 
that address probability inference, using the knowledge of prior 
events to predict future events [52]. We innovatively applied it 
to quantify ecological uncertainty stemming from wildebeest 
hybridization. We show how expert knowledge can be utilized to 
identify domains and infer the probability that biological, spatial, 
and market-based drivers affect wildebeest hybridization rates. We 
show that BCD is an effective tool that provides decision makers 
with a conceptualize real-world complexity, and that the hierarchical 
nature of interlinked subnetworks allows for a logical and accurate 
construction/breakdown of the problem and cross-usage of data 
(Figures 5,7 and 8).

Although the reasons for decreasing wildebeest hybridization 
may differ among stakeholders, the primary aim is universal. 
Governmental officials encounter the need for allocating significant 
expenditure in extreme cases in which a population has undergone 
genetic admixture. A primary example is the culling of entire 
populations in the case of the Abe Bailey Nature Reserve, where 
wildebeest were observed to be the product of varying degrees of 
introgression [27,10,17]. Given that the black wildebeest survived 

two bottlenecks [14], culling at such magnitudes is not only resource 
consuming, but may also have a negative effect on the regional 
metapopulation structure. On a smaller scale, we suggest that game 
owners consider green packaging. That is, international tourists and 
hunters are more likely to prioritize their experience with private 
game reserves or outfitters if they are perceived to place a higher 
dollar amount on the intrinsic value of genetically pure populations, 
which may prove to yield increased revenue. Hence, this study is 
applicable and crucial to all stakeholders who share the mutual aim of 
decreasing hybridization rates. 

In our research field, wildlife managers and owners advised 
that a detailed user-friendly tool would best serve as a structured 
DSS if it could quantify the impact of specific management actions. 
Thus, we put forward an OONB as such a framework (Figure 7). By 
contrast, government officials argued that the OOBN model was 
most helpful as a structured risk assessment tool that would assist 
them in the decision to allocate resources efficiently (Figure 8). Most 
comments reinforce the significant advantages embedded in an all-
encompassing multifaceted model that illuminates management 
tradeoffs. It is logical to assume that wildlife managers and owners 
are most concerned with daily wildlife management decisions and 
implications, whereas government officials are greatly concerned 
with obtaining an eagle’s-eye approach to the problem, which 
considers the effect of market segments and spatial allocation (Table 
1). Lastly, we provide a structured decision tree for standardization of 
the decision-making process and maximum efficiency by clarifying 
the process needed (Figure 9). 

The ratio between male blue wildebeest and male black wildebeest 
and the degree of species sympatry are the primary drivers of 
hybridization (Figure 5). Wildlife management practices should 
be adapted to reduce biological and spatial variables contributing 
to these drivers. In addition, the impact of shifts in various market 
sectors may determine the dynamics of introductions and extractions 
(e.g., translocation and culling events), and as such, have a direct 
impact on population dynamics and the interspecies male ratio. 

Lastly, stakeholder participation is key to validating such models. 
We strongly recommend increasing confidence by strengthening 
collaboration among decision makers to allow for exchange of 
information in order to make DSSs more robust as data become 
available. As new research evolves, BNs and OOBNs can be revisited 
and refined. Nevertheless, there is a need currently for decisions 
regarding the management of wildebeest on private ranches in South 
Africa [8]. Hence, we argue that the suggested OOBNs could be used 
as a pathway toward milestone productive decisions, whereas specific 
BNs could be used to guide management. Lastly, the figures were 
presented in order of development to enable the process of OOBN 
reconstructions (Figure 3). This structure enables the application of 
innovative solutions to ecological predicaments worldwide.
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