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Abstract

Slutsky’s Theorem has important applications in biostatistics. Several generalizations of Slutsky’s Theorem
are presented. For instance, we study the limiting distribution of Y,/ X, when X, — 0 in distribution. Then the
sequence of random varibles tends to an extended random variable.

Introduction

We study the generalization of the Slutsky’s Theorem in this short note. Slutcky’s Theorem is an
important theorem in the elementary probability course and plays an important role in deriving the
asymptotic distribution of varies estimators. Thus Slutsky’s Theorem also has important applications
in biostatistics. Let X,,,Y, and X be random variables and @ be a constant. Slutsky’s Theorem states
as follows.

If Yn_D)aand Xn_D)X’thenYn+Xn—D)a+x andYan—D>aX-

There are some simple generalizations of the theorem. For instance, it is trivially true that
assuming a #0,

if ¥ —2>aand X, —2-> X, then X, /Y, —2> X /a. ey

We shall study some non-trivial generalizations.

For instance, if a =0, is the statement (1) also valid under certain assumptions ? Moreover, one
may wonder whether another generalization of Slutsky’s Theorem is as follows.

If Y, —>aand X, —2—> X, thenY, / X, ——>a/X, (2)

or +1/ X, —2+1/ X , with a certain modification. A well-known result is as follows.
Proposition 1. (Mann & Wald (1943)). Statement (2) holds if P(X =0)=0.

These problems are interesting. We show in section 2 that the necessary and sufficient condition
for statement (2) holds with a0 isF, (0-) - F,(0-); and that for statement (1) holds with a=0
and P(Y,=0) > 1is P(X, =0) - P(X =0); among other results [1].

Main Results

In order to study the possible extensions of statements (1) and (2), we first study some simple
examples. Notice thatif a=0 or{X =0}# ¢, W =a/ X involves % or% . Conventionally, 0/0

o ifa>0
can be defined as 0 orl. In this note, we define a/0={1 ifa=0 Then {W =t} ¢, and W is
- if a<0.

called an extended random variable. Moreover, if P(X =0) >0, then P(X =40) >0,
t|im F,()=P(X=0)>0if a<Oand t|im F, () =P(X #0)<1if a>0.

In general, statements (1) and (2) are false, and two counter examples are as follows.
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Example 1. Let X ~ bin(1,0.5), the Bernoulli distribution,
Xppa =X and X, =X -4, n>1.Then X, —2-X.F, (t)=051(t>1),
where 1(A) is the indicator function of the event A. Notice that F,, is
a degenerate cdf,

ie lim__ F,, (t)<F,(®)=1and P(1/ X =+wx)=0.5.

t—>o0

However, P(1/ X, <0)=P(X =0)=05, k >1,and

0.5 if niseven
F1/x" (0-)= F1/><“ (0 ={

. Thus, 1/ X, diverges in distribution.
0 if nisodd. 8

Letting Y, =1, then Y,—2—a=1, but Y,/ X, diverges in distribution.
i.e., statement (2) fails. Moreover, let Z, =1. Then z, -0, but both

Z /X, and X, /Z, diverge in distribution, as

L yx g+ XX=D
nx0 n

— ool(X =0)if nisodd
Z,/X,=
1X =1)

—X =0
( ) + 1

— —1(X =0)if niseven

Example 2. LetX ~bin(1,0.5), X,=X+1/n, and v,=c/n, n>1,
where ¢>0. It can be verified that x —© 5 x, 1/X,—2-1/X and
Y, —2 0. Notice that

Y./ X, =cl(X =0)+--:1(X =1) - cI(X =0).

n+l

X, /Y, =1(X =0)/c+2211(X =1) > 1(X =0)/c+ocl(X =1).

Thus, ¢=1 iff Y,/X,—2>0/X iff X,/Y,—2— X /0. In other
words, if C #1, both statements (1) and (2) do not hold.

Remark 1. Examples 1 and 2 indicate that under the assumptions
in Slutsky’s Theorem,

(1) it is not always true that 1/ X, —2—>1/X;

(2) Slutsky’s Theorem is not applicable to the sequence of
extended random variables Y, /X,, unless additional assumptions are
imposed.

In Proposition 1, a sufficient condition is given, that is, P(x =0)=0.
It is an interesting problem to find the necessary and sufficient
condition for the generalization of Slutsky’s Theorem as in Eq. (2). To
this end, we first establish two lemmas.

Lemma 1. Let X be a random variable. Then

F (0-)—F, (s-) if t<0
Fx () =1 F, (0-) if t=0 wheres=1/t; (3)
F (0-)+1-F, (s—) if t>0
F (-1/t)-F, (0-) if t<0
F ) =91-F, (0-) ift=0 4%

1-F, (0-) + F, (-1/1) if t>0.

Remark 2. By the lemma, F,, (~0)=0and P(1/ X =) =P(X =0).
Moreover,

F o x(»0)=P(X =0)and P(-1/ X =) =0.

Remark 3. If Y =-1 and statement (2) holds, then
Y, /X,—2—>-1/X. By defining Y=-X, one may derive the
expression of F, as follows. Letting s =1/t,

anx ®= Fl/Y ®

F(0-)-F,(s-) ift<0 [F(-1/t)-F,(0) ift<0
={F,(0-) if t=0=141—F, (0-) if t=0
F (0-)+1-F,(s-) if 50 |1-F,(0)+F,(-1/t) if t>0,

which is false (see Eq.(4)), asF, (0) = F, (0-), unless P(X = 0) = 0. The problem in

deriving F_,,, throughY =-X isdue to 4-=—coif X =0,but =0 if Y =—X =0.

Proof of Lemma 1. It suffices to prove the lemma in these three
cases:

(a)t=0,(b) te(-»,0) and (c) t e (0,0) .
Case (a). If t =0 then

Fx (0)=P(@/X <0&X <0)+P(1/X <0&X =0)+P(1/ X <0&X >0)
=P(L/ X <0&X <0) = P(X <0) = F, (0-),

Fx(0)=P(-1/X <0&X >0)+P(-1/ X <0&X =0)+P(-1/ X <0& X <0)
=P(-1/X <0&X >0)+P(-1/ X <0& X =0)
=P(X>0)+P(X =0)
=1-F, (0-).

Case (b). If t <0, then

Fx ) =P/ X <t&X <0)+P@A/ X <t&X =0)+P(1/ X <t&X >0)
=PI/ X <t&X <0)
=P(1/t< X <0)
=F, (0-)—F,(s-), wheres=1/t,
Fox(®)=P(-1/X <t&X <0)+P(-1/ X <t& X =0)+P(-1/ X <t&X >0)
=P(-1/X <t&X =0)+P(-1/ X <t&X >0)
=P(X =0)+P(-1/t> X >0)
=P(-1/t= X >0)
=F, (-1/t)-F,(0-).

Case (c). If t >0, then
F )=P1/X <t&X <0)+P(L/ X <t&X >0)+P(1/ X <t&X =0)
=P(X <0&1/X <t)+P(X >0&1/ X <t)
=P(X <0)+P(X 21/t
=F, (0-)+1-F, (s-), where s =1/t,

F,W(t)=P(_Y1St&X >0)+ P(_Ylgt&x <O)+P(_?1£t&x =0)

=P(X >0)+P(X <0&X <-1/t)+P(X =0)
=P(X 20)+P(X <-1/1)
=1-F, (0-)+F, (-1/t). o

Lemma 2. Assume that X,—2-X. Then *1/X,—2->+1/X iff
Fy, (0-) > F (0-)-
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Proof. Notice that t is a continuous point of a cdf F () iff
P(X =t)=0. For each t, letting s=1/t, S, =1-F,,and S, =1-F,,
it follows from Lemma 1 that

If t=0, thentis a continuous point of F,, iff s=1/tisa continuous point of F,.On the

R, (0-)-F (s-) ift<0 F (0-)—F(s-) if t<0
Fux, (=1 Fy (0-) if t=0 and Fy, (t) =1 F (0-) if t=0
Fy, 0-)+ Sy, (s-) if t>0, F, (0-)+S (s-) if t>0.

Other hand, if t=0 then S=oand P@/X =0)=P(X =+x)=0,
as X is a random variable. As a consequence, t =0 is a continuous
point of Fy (t) . By the assumption that X, —°-»Xx and in view of
the expressions of F,x and F,, given above, if is a continuous point
of Fy , then

Fox, () = Fy (O iff B (0-) — F, (0-).

Consequently, 1/ X, —2—1/ X iff F, (0-) — F,(0-).

By comparing F.x and F.. (see Eq. (4) in Lemma 1), as
comparing F,, and F,

-, in the previous paragraph, one can prove
that -1/ xni_l/ x iff Fy (0-) - F,(0-). We skip the details.

Corollary. Suppose that X, —2 X and Y,—2—a, then
Y, #1/ X, —2—>a+1/ X iff F, (0-) > F,(0-).

Proof. Assume that X,—2>X and Y,—2->a=0, we shall first
prove that

F (0-) > F (0-)iff a1/ X, ——axl/X . (5

It can be shown that

F, (0-)-F (s-) ift<a
F 1 (®=1F (0)
X F, (09)+S, (s-) ift>a

F, (0-)-F, (s-) ift<a
ift=a and F i(t): F, (0-) ift=a
X F (0-)+S,(s-) ift>a

wheres=1/(t—a).If t # a, then t is a continuous point of F,
iff s =1/(t —a) isa continuous point of F, . On the other hand, if t =a
thens =00, andP(1/X =0)=P(1/X =+0)=0. As a consequence,
t=a is a continuous point of F, . By the assumption that x,—e,x,
and in view of the expressions of F,,yxand F,,, given above, if t is
a continuous point of Foyxo then F,., (t) > F,yx Q)iff Fy (0-) > F (0-).

Consequently, a+1/X,——a+1/X iff F, (0-) > F(0-). Thus
(5) holds.

In order to prove the corollary, in view of (5) it suffices to show
that

Y, +1/ X, ——a+1/ X iff a+1/ X, ——a+1/X.  (6)

Let Y=t be a continuous point of F,.,x(Y), then V £>0, 3
n >0 such that

| Fawx (¥) = Foux () [< & whenever | y —t[< 7.

Let t—77, and t+7, be two continuous points of F,,, satisfying
1, € (0,77] (as the set of continuous points of F,,,, is dense). For
the given ¢ >0 above, 3 N, such that P(Y —a|>7,) <& whenever
n>n,. We now prove (6).

(:>)'P(a+xigta‘Yn_a|£no): PWH +XiSt+(Yn_a)?|Yn_a|£no)

n

e (P({Y, +Xist—770}mA),P({Yn +Xi$t+770}mA)), (7)

n n

where A ={|Y, —a|<n,}.
Notice that if n>n_, then

\P(a+xist,|vn—a\s qo)—P(a+Xist) - P(a+xist,wn-a|>no)s.s,

n n n

1 1
‘P(Yn+X7§t77707‘Yn7a|§no)7P(Yn+X7St7no)|<g:

n n

\P(Yn+xist+no,|Yn—a\£ 770)—P(Yn+xist+no)|<g.

n n

These three inequalities yield

P(Yn+xist—no)—2gs P(a+xist)s Po/n+xist+no)+2€. ®)

Since F,,,y is continuous at t—7, and t+7,, (8) and (7) yield
Foux(t-1,)—2¢< !'L—nl Foux, M= ,!LTEFNL’X" O <R t+n,)+2e-
Since & is arbitrary and F,.;x is continuous at t, letting 7, —> 0

yields limF,, , (t)=F,,,(t). Thatis, a+1/ X, ——a+1/X .

(<=). In a similar manner as in deriving (8), one can show

P(a+xist—no)—25£ P(Y, +Xi£t)§ P(a+xist+770)+25. 9)

Since F,,,y is continuous at t—7, and t+7),, (9) yields

Foux (t-m,)—-2e< !L—n; Fvnwxn M= EFVHA/X,, O < Fpux (t+m,)+2¢"

Since & is arbitrary and F,,, is continuous at t,

lim FY,,+1/><n (t)=Fux (1)

The next theorem is the main result.

Theorem 1. Assume that a=0, Y, —b saand Xn—>D X . Then
Fy, (0-) > F (0-) iff Y, / X, ——a/ X

Proof. Since a=0, it yields (a) a>0 or (b) a<0. In view of
Remark 3, we shall give the proof separately in these two cases. For
simplicity, we put the proof of case (b) in Appendix [2], and only give
the proof of case (a) here.

In case (a), we can define Y =Y /a, X, =X, /a and
X*=X/a.ThenY, /X, =Y, /X, and a/ X =1/ X". By the given
assumptions and Slutsky’s theorem, X, —2 > X and Y, —>—>a =0
iff X:—2 X" and Y, —2—1. Thus, without loss of generality, we
canassume a=1,ie, Y —21.

(<=). By Lemma 1, t=0 is a continuous point of
F(t) and F, (0)=F,(0-). Thus statement (2) yields
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F, x (0)—>F,,(0)=F,(0-). Consequently, statement (2) also
implies that v ¢ > (0 and § €(0,0.1), 3 n, such that

IR, x, (0)—F(0-)|<eand P(Y, -1|> ) < & whenever n>n,. (10)

Verify that

{X, <0}={Y,/ X, <0,X, <0,|Y, ~1|< 5} {X, <0,|Y, -1[> 5}
WY, /X, >0,X, <0,|Y, ~1]< 5}
={Y, /X, <0,|Y, ~1]< SFU{X, <0,|Y, ~1> 5}
L,/ X, <0r={Y,/ X, <0,]Y, ~1|< 5}U{Y, / X, <0,|Y, -1> 5}.
=>|P(X, <0)—P(Y, /X, <0)|< 2¢ and
IFy, (0) = F (0-) [€| P(X, <0)~P(Y, / X, <0) [ +| P(Y, / X, <0)~F, (0-) |< 3¢

(by (10)), if n>n,. Since & is arbitrary, F (0-) = F,(0-).

(=>). Now assume thatF, (0-) > F,(0-),
X,—2— X . Then 1/ X, —2-1/X by

Y,—2>1 and

Lemma 2. It suffices to show the statement as follows.

If Y, —2—>a=landl/X,—2->1/X,thenY, /X, —2—>a/X. (11)

If we let Z,=1/X,, then Eq. (11) looks like Slutsky’s theorem.
Notice that Slutsky’s Theorem is proved under the assumption that Z
is a random variable and & is an arbitrary constant. Since Z =1/ X is
an extended random variable, and Examples 1 and 2 suggest that the
extension of Slutsky’s theorem may not be true if Z=1/X and a=0,
we shall prove statement (11) rigorously.

Let y =t be a continuous point of F,, (y),then vV ¢>0,3 n>0
such that

| Fux (Y) = Fyx (t) I< & whenever | y -t [<7. (12)

Let t-7, and t+7, be two continuous points of Fux satisfying
7, €(0,77]. Let g(¥,)=t/Y,. Since g(x) is continuous at x=1, for the
given 7,, 3 §<(0,1/2) such that [t/Y, —t|<7, whenever |Y,-1|<5.
For the given £ >0 above, 3 n, such that P(|Y, =1|> &) <& whenever
nzn,. Thus

Y 1t
P(=<t,|Y, -1|<8) =P(—<—,|Y, -1|<5
(x | <) (x v | <)

n n n

1 1
e (Pl StnalY, ~LIS )P St Y, -1150). (13)

if n>n,. Notice that

P(Y,/ X, <t)=P@Q/ X, St/Y,,|Y, -1|< )+ P(Y,/ X, <t,|Y, 1> 9),
P/ X, <t+7,) =P/ X, <t+7,,|Y, 1< 8)+ P/ X, <t+n,,|Y, -1> ), (14)
P/ X, <t—n,)=P@/ X, <t-n,,|Y, 1< 8)+ P/ X, <t—n,|Y,-1> 5] (15)

Since F, is continuous at t—7, and t+7,,
Fux (1) =28 <Ry (t-1,) & (by (12), as 7, € (0,17))

=limP(/ X, <t-n,)—¢ (as F, is continuous at t —7,)
<limP(Y, / X, <t) (by (13), (15) and P(Y, —1[> &) < &)
<limP(Y, / X, <t)
<limP(l/ X, <t+7n,)+& (by (13), (14) and P(Y, —1|> 8) < &)
=F,y (t+7,)+¢ (as F,, is continuous at t +7,,)
<Py () +2¢ (by (12),as 77, € (0,7)).

Since & is arbitrary, F . (t) > F, (1) if F

18 continuous at t.
Thus (11) holds.

In Theorem 1, we impose the condition a=0. Notice that in
Proposition 1, it allows a=0 but assumes P(X =0)=0. It follows from
P(X=0)=0 and X,—2>X that F, (0-) > F,(0-). The next two
examples illustrate what may happen if P(X =0)>0 and a=0. The
complication is due to .

Example 3. Let X ~bin(, p)» W ~U(-L1), x 1w, X =X +% and

Y, =W /n. Then X, — X and Y, —» 0. Moreover,

+=WI(X =0)+ Wnl((lfi)l L >W1(X =0)# 2. Furthermore , it is also not true

that X, /Y,—2-X /0, as

N 0) n+1 1(x=0) X
y—n=T+1(x=1)TAT+1(X=l)[wl(w20)—ool(w<0)]¢6
Example 4. Let X ~bin(Lp), W~U(-11), X1W, X =X +1
and Y, =%[+(-D"]. Then x -x, v, -0, Fy, (0-) > F (0-)> and
1/ X,—2-1/X . Moreover,

1

1
n(1+H)

WX =0)+1(X =1)
Yn/xn =

1— 2W1(X =0) if nis even

0 if nis odd.

Since PWL(X =0)=0)=1-p>0,y,/x, diverges in distribution.
Moreover, X, /Y, diverges too.

In view of Examples 1, 2, 3 and 4, if a=0 then the generalization
of Eq. (2) does not relate to F, (0-) > F,(0-). In particular,
F, (0-) > F, (0-) does not imply v /X, converges in distribution,
vice verse, Y,/X, converges in distribution does not imply
Fy, (0-) > R (0-)-

Theorem 2. Suppose that P(Y, =0) -1 and X,—2- X . Then
(@Y, /X, —2->0/ X iff P(X,=0)— P(X =0);
(b) X, /Y, —2— X /0iff F, (0-) - F, (0-) and F, (0) > F(0);
(©) X, /Y,—2—> X /0iff P(X,=0)— P(X =0)-
Proof. We first prove statement (a). Notice that
F,x (1) =1(t > 0)P(X #0)+1(t >1)P(X =0) and
R, (0 =1t20P(X, 20=Y,) +1(t >)P(X, =0=Y,)+ P(Y,/ X, <t,Y, = 0) . Since

0/ X e{O’l}, P(X=0)+P(X #0)=1<P(X,=0)+P(X,=0=Y,)+P(Y, #0)
and P(Y, =0) — 0, statement (a) is trivially true.

We now prove statement (b). Since X /a=—o(X <0)+w(X >0)+(X =0),
X /a=-wl(X <0)+l(X >0)+1(X =0). (16)

Since P(Y,=0)—>1,v £>0, 3 n, suchthat P(Y, #0) <& whenever
nzn, For n>n,,

Fey, ©=P(X, /Y, <tY, =0)+P(X, /Y, <t,Y, #0)

=P(X, <0y, =0)+1(t 2)P(X, =0,Y, =0)+ P(X, /Y, <t,Y, =0).
[ Fy, v, () —F, (1) [< & where
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F.(t)=P(X,<0Y,=0)+1(t>1)P(X,=0,Y,=0). 17

Since X/a is an extended random variable, and F,,(t) is
continuous at t ¢ {1, +oo},

X, /Y, =2 X /aiff Fy , (t) = Fy ) if te{Loc) (15

Since F,(t) and F, _(t) are both constant on (—o0,1) and [1 ),

respectively, and & is arbitrary, (16) and (18) yield

X, /Y, —2— X /aiff Iim‘ Fyv, (0 =F.(0andlimF, , (1) =F.@. (19)

By Eq. (17),| Fe oy, (0)- Fy 0-)<e> | Fen,-F 0)<e>
F,,.(0) = F,(0-) and F, (1) = F, (0) , hence statement (19) yields

X, /Y, ——>X/a iff lim_, F (0-)=F(0-) and
lim,_,, F, (0)=F,(0). This completes the proof of statement (b).

Since P(X,=0)=F, (0)-F (0-) and P(X =0)=F,(0)-F,(0-),
statement (c) follows from statement (b).

Notice that it is not necessary to assume X,X in Theorem 2. It is
assumed in Theorem 2 that P(Y, =0) 1, but not in the next theorem.

Theorem 3. Suppose that Y, —>—0 and X,—2> X . Then

(a) =—L0/ X iff P(Y,/X,-1]<5) > P(X =0) ¥ &§€(0,0.1);

(b) #=—L—>X/0iff P(32-1|<8) > P(X=0) Vv §€(0,0.1), and
P(32<0) > P(X <0)-

Remark 4. Notice that P(#-1<6)—>P(X=0) and
P(32-1]<8) - P(X =0) are not equivalent, as X,/Y, is not
continuous at (X,,Y,)=(0,0)-

Proof of Theorem 3. We shall give the proof in 3 steps.

Step 1 (preliminary). v ¢>0, 3 Se(0,1) and 3 n, such that
(i) Fx () is continuous at t e {—s, s},

(ii) P(X € (-s,0)u(0,s)) < ¢,

(iii) 1P(X, €(-s,0)L(0,5))—P(X € (-5,0)u(0,5)) <& if n=n, (by
(i),as x,—2»X),

(iv) P(Y,|>S8)<e if n>n, (as Y,0), where §<e¢s.

Consequently,
Y, /X, [<IY, | /s€ 875 <27 (X,.Y,) e{X, & (5,5),Y, [< ¥ (20)
[ X /Y, [28/|Y, [2s/8>1/eV (X,,Y,) e{X, £(-s,9).,] Y, [< I} (21)

P(X, e(~s,0)U(0,5)) < P(X, € A)~ P(X € A)|+P(X € A) < 2¢ (22)
by (ii) and (iii), where A=(-s,0)U(0,s). By (20) and (21),

P(X, /Y, |21/&)=P(Y, /X, |<&) (23)
>PY, /X, |<e3n{X, &(-5,5).,]Y, [<5})
2P({X, & (=s,5),|Y, < }) (by(20))
2P(X, £(-s,9)-P(Y, > 9)
21-P(X,e(-s,8))-¢ (ifn=n))
—-1-P(X e(-s,8))—¢ (asn, > )
—>1-P(X =1)-¢cass{0.

Step 2 (prove statement (a)).

(=>)Since F,, (t)=1(t=1)P(X =0)+1(t>0)P(X =0),

Fox, 0+0)~F, , 1-8)>P(X=0)  for the
points x=1+5 of F(x) that satisfying x—1.
P(Y,/X,-1<8) > P(X =0) if §<(0,0.1).

(<=). P(Y,/ X, -1j<5) - P(X =0)
if S5~0+ it from (23) that
lim,, [P(Y, /X, [<&)+P(Y, /X, -1|<5)]21-P(X =0)+P(X =0)—¢

V £>0and vV §€(0,0.1). Thatis, Y,/ X,—2»0/X, as 0/ X {0,1}.

continuous
It follows

Since
follows

Step 3 (prove statement (b)).
(=>) Since F,,(t)=1(t=1)P(X =0)+P(X <0),

Fy n @+1)—F , (1-t) > P(X =0) for the continuous points
1+t of F, that satisfying t1 0. It yields P(Y,/X,-1|<8) - P(X =0)
if 5 €(0,0.1).

Moreover, P(X, /Y, <0)=F, , (0-) > F,,(0-) =P(X <0).

(<=). P(X, /Y, -1]< 5) > P(X =0)
if 5€(0,0.1)> it follows from (23) that
lim[P( X, /Y, |21/&)+P( X,/Y,-1<8)]=2P(X #0)+P(X =0)-¢
vV &>0. Since & is arbitrary, P(X,/Y,[>M)—P(X=0)
A4 M >2 and P(X,/Y,-1|<8) > P(X =0). Moreover,
P(X, /Y, e(~0,1) U (L)) 0. If P(X, /Y, <0) > P(X <0), then

Since

P(X,/Y,>2) - P(X >0) and Fy () > P(X <0)+1{t>1)P(X =0) ift=1.

Corollary: Suppose thatx X, Y,a=0 and P(Y, >0)>1. Then
X, /Y, —2 X /a iff P( X, /Y,)-1|<8) —> P(X =0) v 6 (0,0.1).

Notice that Theorem 2 can also be viewed as a corollary of
Theorem 3. It seems that Theorem 3 can be further modified to
study Y,/ X,—2-Z71(X =0) and X, /Y,—2—Z1(X =0)-Z1(X #0)
where Z depends on{Y, /X },., rather than on a/X alone, if Y, / X,

does converge in distribution.
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