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Introduction
In prospective studies, there is often a response variable which may be associated with a time 

to an event of interest. For example, in HIV (Human Immunodeciency Virus) clinical trials, a 
longitudinal response variable, viral load or HIV RNA (Ribonucleic Acid), may be related to the time 
to the first decrease to CD4/CD8 (clusters of differentiation 4 and 8 T-cell co-receptors) ratio. Such 
an association throws light on important indicators of risk of disease progression [1,2]. In addition, 
the viral load has a Lower Detection Limit (LOD) and a developmental growth curve with phasic 
changes over time [3-5]. The viral load growth curves of patients, After Receiving Antiretroviral 
(ARV) drugs, may decrease over time up to a point and then start increasing upwards [6]. These 
phasic changes may also occur gradually instead of abruptly because of a biological process of 
developing resistance to ARV drugs over time [7]. To simultaneously model these features of viral 
load, we extend the bent-cable method [8,9] by incorporating (i) the relationship between viral load 
proles and time to first decrease of CD4/CD8 ratio; (ii) two-part modeling of left-censored viral 
load to account for heterogeneity of patients who are either progressing to AIDS (viral load above 
detection limit and rebound) or non-progressing to AIDS after receiving treatment (having viral 
load below detection limit and decreasing over time); and (iii) skewness of response variable.

Joint modeling of longitudinal phasic changes and event time data is substantively important 
[10-12]. For modeling phasic changes using repeated observations over time with an abrupt change, 
a piecewise linear regression is commonly used [13-16]. A piece wise model, however, may not be 
sensible where a trajectory may show a gradual transitional change instead of an abrupt change. For 
example, in the case of HIV/AIDS studies, trajectories of viral loads may show gradual transition 
periods between an initial decline after treatment and rebound at later time in the follow-up. This 
feature may manifest because of drug resistance and non-adherence [7]. To properly analyze such 
a feature, we use a bent-cable regression within the context of joint modeling of time to event 
and longitudinal data. The bent-cable model consists of two linear growth curves to describe the 
incoming (decline)and outgoing (rebound) phases, joined by a quadratic bend to represent the 
gradual transition period [9,17]. A typical graph of a bent-cable model is depicted in Figure 1 where 
the gradual transition period is between ϕ1 - ϕ2 and ϕ1 + ϕ2 with its center at ϕ1. The downward 
trend to the left of ϕ1 - ϕ2 is referred to as an incoming line while the upward trend to the right 
of ϕ1+ϕ2 is an outgoing line. These parameters have nice interpretability in the joint Tobit model 
focusing on growth curves and time to event (Figure 1).

Specifically, joint modeling of time to first decrease of CD4/CD8 ratio and viral load growth 
curves provides valuable information about the risk of disease progression [1,2]. CD4 and CD8 cells 
are two important types of white blood cells where CD4 cells fight against an infection, while CD8 
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Abstract

This paper presents a new methodology for jointly identifying bent cable phasic patterns and mixture of 
progressors and non-progressors of human immunodeficiency virus infection and acquired immune deficiency 
syndrome (HIV/AIDS) patients based on longitudinal and time-to-event data. Using the longitudinal data, 
the bentcable model gives an estimate of a gradual transition period for the development of drug resistance 
to Antiretroviral (ARV) drug for treating HIV patients. In addition to finding such an estimate (phasic pattern 
identification), a two-part modeling is carried out to incorporate a relatively large percentage of left-censored data 
in the framework of joint analysis of time to event and longitudinal data. Even though there are some methods 
for separately analyzing time to event and longitudinal data, those methods may not be appropriate when time 
to event is dependent on the longitudinal outcome. A better approach is to extend a bent-cable To bit model 
that jointly incorporates patients who are potentially progressors to AIDS from those patients who do not, phasic 
changes of trajectories of viral load, and the association between the time to a decline of CD4/CD8 ratio and 
rates of change in viral load. The proposed methods are illustrated using real data from an AIDS clinical study.
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cells suppress the immune response [18]. For an HIV infected patient, 
the CD4 cell count declines while the CD8 cell count increases. The 
ratio of CD4 to CD8 indicates how strong patient's immune system is 
and helps predict how likely one may develop a progression to AIDS 
[19]. To fully characterize the relationship between the time to first 
decline of the CD4/CD8 ratio and the rate of trajectory of viral load, 
the heterogeneity of substantial proportion of left-censored values 
should be taken into account.

Recognizing the need to account for both the left-censored 
response variable (viral load) and heterogeneity among subjects 
leads to the development of a two-part Tobit model [20-25]. The 
standard Tobit model assumes that the underlying process generating 
left-censored values is the same as the process that generates the 
observations above LOD (26). This assumption may not always be 
true. It is plausible that some of the factors that influence left-censoring 
may be different from the factors that influence the generation of 
data above a LOD. In our data which will be analysed later, there 
may be a mixture of patients in which, after receiving antiretroviral 
therapy(ART), some have their HIV RNA suppressed enough to 
be below and stay under LOD nonprogressors to severe disease 
condition), while others intermittently have values below LOD due 
to suboptimal responses [27] (progressors). An extended version of 
the standard Tobit model is flexible to incorporate such heterogeneity 
of patients and non-normal distributions for accounting skewness 
in the response variable. Thus, we propose to use more flexible 
parametric models based on skew-elliptical distributions [28,29] to 
incorporate skewness of random errors. Multivariate Skew-Normal 
(SN) and multivariate Skew-T (ST) distributions are special cases of 
skew-elliptical distributions.

To our knowledge, there is relatively little work done that 
simultaneously addresses (i) gradual phasic changes of growth curves 
of a response variable with skewness and heavy tails, (ii) time to event, 
and (iii) identifying factors that influence left-censoring. To this effect, 
this paper develops Joint Two Part Bent-Cable Tobit Models (JTBTM) 

for longitudinal and time-to-event data and analyzes real data from 
an HIV/AIDS study using a Bayesian approach. The remainder of 
the paper is organized as follows. In section 2, we develop Two-Part 
Bent-Cable Tobit Models (TBTM) with multivariate ST distributions 
for a response variable with skewness and left-censoring, and an 
Accelerated Failure Time Model (AFTM) for a time to event. In 
Section 3, a Bayesian inferential procedure will be provided. In 
Section 4, an illustration of the proposed methods using an AIDS data 
set will be given. Finally, we conclude with a discussion in Section 5.

Joint bent-cable Tobit models with skew distributions
This section describes the joint modeling of two-part bent-cable 

growth curves of left-censored continuous data with right-skewness 
and an Accelerated Failure Time Model (AFTM) for time-to-
event data. Suppose we have n subjects followed over time. The ith 
subject provides a set of longitudinal quantitative measurements 

ij, iy j 1,..., n= at times ij,t 1,..., n,i = and a time-to-event Ti to a 
certain event of interest. We assume that the timing of the observation 

ijt  is non-informative since the decision to schedule a measurement 
is made independently of the response or time-to-event process. To 
analyze such a set of data, we next present the two main components 
of the proposed model: Two-Part Bent-Cable Tobit Models (TBTM) 
for a response variable with skewness and left-censoring, and interval-
censored time-to-event model.

Two-part bent-cable models for left-censored longitudinal 
data

In this subsection we describe the first component, TBTM, 
which involves two-part bent-cable Tobit modeling of left-censored 
longitudinal data having two parts: one part deals with the question of 
whether the response value is left-censored or not, and the other part 
determines the gradual phasic patterns of growth curves of the actual 
observed data of the response variable.

Let *
ijy be a latent response variable that would be measured if 

the assay did not have a lower detectable limit ρ . A most commonly 
used model for *

ijy is the Tobit model which is written as:

                    

                        					                  1

where ρ is a non-stochastic LOD, which in our example is 
equivalent to log (50). Note that the value of yij is missing when it is 
less than or equal to ρ.

It is straightforward to extend (1) for allowing the possibility that 
only a proportion, i jπ , of the observations comes from a population 
of low responders to treatment (progressors) having a skew-t (ST) 
distribution, while the other proportion, i j1− π , of the observations 
are below LOD whose distribution is located entirely at or below , 
That is, any value above  may come from the ST distribution, while 
a censored value (yij < ρ) may be from either the ST distribution 
or a point mass distribution. To model this feature of the response 
variable, we use a Bernoulli random variable Sij with parameter i jπ
, where Sij = 1 if a patient is a progressor with probability Pr (Sij = 1) 
= i jπ ,

Figure 1: A hypothetical scheme of a bent-cable model. A gradual transition 
period is between 

1φ - 2φ and 1φ  + 2φ  where 1φ   is the center and 2φ  is the 
width. The transition connects two linear trends called the incoming (left side 
of the dotted line at 1φ -

2φ ) and outgoing trends.
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And Sij = 0 if a patient is a nonprogressor with probability i j1− π .

For the Bernoulli random variable Sij , a logistic model is 
formulated as:

                         					                  

						                    2

where m†(.)  is a known function which will be specified in 
Section 4, ηare population-level parameters, ui is a random effect 
which has a normal distribution with mean zero and variance 2

uσ
, and ai is a vector of random effects associated with a time-varying 
covariate ( )i jZ* t

 
defined as

                                              			                 3

Where zij is an observed covariate with measurement error; 
ij 1ij 2ij iZ* ' 'a= υ α + υ represents the true (but unobservable) 

covariate value at time tij ; 1ijυ  and 2ijυ  are r × 1 design vectors. Here 
( )'

1, r...,α = α α and ai = (a1i,…, ari) are unknown population (fixed-
effects) and individual-specific (random-effects) parameter vectors, 
respectively. ( )ii i1,... in '∈ = ∈ ∈ Follows a multivariate ST distribution 
(see Appendix A for details) with υ 1 degrees of freedom, scale 
parameter 2ϵ and ni  ni skewness diagonal matrix ( )i niIε ε∆ δ = δ .

We now discuss the second part of TBTM, which is a bent-cable 
model for a response variable, yij . This model is specified based on an 
ST distribution and given as
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where ij is the mean structure which is defined next; zij is a time-
varying covariate, and the error vector ii1ei = (e ,...,ein )' follows a 
multivariate ST distribution with degrees of freedom 2ν , variance 2

eσ  
and  n ni i×

 
skewness diagonal matrix ( ) e Iei ni∆ δ = δ .

The mean structure ijµ

 
in (4) represents the different growth 

phases of subject-specific trajectories: the incoming and outgoing 
linear phases, joined smoothly by a quadratic bend of non-negative 
width (see Figure 1). For appropriately modeling these growth phases, 
the following bent-cable mixed-effects model [8,9] is proposed.

                   					                   5

where ( ) ( ) ( ) ( ) ( ) ( ) ( )2

i j i i j 1i 2i 2i i j 1i 2i i j 1i i j 1i 2iq t , k t \ 4 I | t | t I t , I .= − φ + φ φ − φ <φ + − φ > φ + φ

is an indicator function; 1iβ and 2iβ  are the incoming random 
intercept and slope, respectively; 3iβ is the change in slope between 
the in-coming and outgoing linear phases; ( )K ,1i 2ii = φ φ in which 
ϕ1i is the center of the bent-cable model; and ϕ2i is the half-width of 
the bend. Note that the bent-cable model is a generalization of the 
piecewise model by replacing the kink in a broken-stick model with 
a quadratic bend with midpoint ϕ1i and half-width ϕ2i. To account 
for between-subject and within-subject variations, the random 
coefficient parameters in (5) are further specified as

                                           				                  6

where ( ), '1, 2, 3, 1 2β = β β β φ φ are population-based parameters. 
The random effects (b1i, b2i, b3i, b4i, b5i)′ have a multivariate normal 
distribution ( )N 0, b5 ∑ where b∑ is a variance-covariance matrix 
with dimension of 5. This proposed bent-cable model is applied to 
t the HIV/AIDS data (see Section 4 for more information). The first 
segment of the bent-cable curve represents a decline in viral load 
after treatment; the middle part represents a gradual growth. This 
gradual growth period occurs as a result of the release of HIV from 
macrophages or other long-lived cells from the lymphoid tissues. The 
outgoing segment models the viral load rebound as a result of drug 
resistance. Next, we present a model for a time to event measured 
within the same trials.

Interval-censored time-to-event models

In this subsection we now describe the second component of the 
joint modeling framework. It is an accelerated failure time model 
(AFTM) for a time to event. The timing of the event of interest may 
not sometimes be available except that it is known to lie in an interval 
obtained from a sequence of visit times. This type of data is referred to 
as interval censored data. For such data, the exact time T to an event 
of interest is only known to fall within a time interval (L, R], such that
0 L T R< < < < ∞ . A commonly used method for modeling interval-
censored data is an AFTM which assumes that the covariates speed up 
or slow down the expected event time [30,11,31]. As an extension of 
AFTM, we consider the random effects accelerated failure time model 
which takes into account covariates in (3) and longitudinal response 
in (4) process by including individual-specific random effects, ai; bi, 
in a linear mixed model [32]. Thus

( ) ' '
i i o 1 i 2 i i

i i

log T a b
,

+ +ζ = = γ + γ + γ + ε

= µζ + ε
                     7

where Ti is the event time of the ith subject, k ,ii
µ = γζ

 

and  

( )' ', ,0 1 2
+ +γ = γ γ γ

 
are unknown parameters, ki = (1, a′I, b′i)′ contains 

the random-effects from models in (3) and (4). We assume that ki 

are independent of iε and iε follows a normal distribution with 
mean zero and variance 2σζ  . The AFTM in (7) can also be written 
as, ( )T exp( k )exp ,iii = γ ε and Ti is only known to lie in the interval

                                                              			                 8

Where t ti,1,..., i,ni
 
 
 

are the clinic visit times for the ith patient,          
i = 1,…., m.

In the above model, the event times are assumed to depend on 
individual-specific random effects from the rates of response bent-
cable trajectories and associated covariate measurement error process 
(e.g. CD4). Thus, Model (7) is closely related to the so-called shared 

*
i j ij i j

1ij 2ij i ij

Z Z

' ' a

= + ∈

= υ α + υ + ∈

( ) ( )( )ni ,ve

* 2
i j i j i j i j i j i e ni eiy g t , , z e ,e ~ ST 0, I ,= µ + σ ∆ δ

( ){ } ( )( )† *
ij 1| m , ,i i ij ij ilogit Pr S u ,a t Z t u= = η +

( )ij ij 1i 2i i j 3i i j iz * t q t , kµ = η +β + β + β ( ]
( ]
( ]
( )

1i i i

i i i L i i L i i

i i i i

0, t , , if T t ,1

L ,R t , , t ,R , if t , T t ,R

t , n , , if T t , n ,

 <


= < <
 ∞ >

1i 1 1i 2i 2 2i 3i 3 3i 1i 1 4i 2i 2 5ib , b , b , b , bβ = β + β = β + β = β + φ = φ + φ = φ +
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parameter models [30]. These shared random effects may be viewed 
as latent processes that govern the longitudinal process, the covariate 
measurement error process and the time-to-event process, leading to 
a joint modeling approach.

Joint Model

As presented in (3, 4, 7), the association among the longitudinal 
trajectories, covariate measurement error, and time-to-event 
processes can be jointly described through the shared random-effects 
ai and bi. This joint modeling gives less biased and more efficient 
inferences than separate analyses. Denote the observed data by 

( ){ }i i i iD y , Z ,L ,R ,i 1,..., n= =  where ( ) ( )i ii i1 in i i1 iny y ,..., y ', Z Z ,..., Z '= =
and ( ]i iL ,R

 
is the smallest observed interval containing the event time 

Ti. Let = { }2 2 2 2
1u e 2 e, , , , , , , , a, b, , , ,ζ ε εθ = α β γ σ σ η σ σ ν ν δ δ∑ ∑   

be the collection of unknown population parameters in models (3), (4) 
and (7). Let f (.|.) and F (.|.) denote a Probability Density Function (PDF) 
and Cumulative Density Function (CDF), respectively. Conditional 
on the random variables and some unknown parameters, a detectable 
measurement yij contributes ( )i j i if y | a b , where as a non-detectable 
measurement contributes ) ( )i ij i i, b r y | a , biF( | a Pρ ≡ < ρ in the 
likelihood. The likelihood function for the joint model becomes  

 

     

                                             			

			 

				     	                                9	
        Where					             

( ) ( ). and .Φφ are standard normal density and cumulative 
density distribution, respectively. For time to event, di = 0 if right 
censored, and di = 1 if interval censored. Note that the observed 
dependent variable yij = y*ij if cij = 1, and yij is left censored if cij = 
0, where cij is a censoring indicator, and the latent variable y*ij  was 
discussed in Section 2.

Bayesian Inference
The unknown parameters in (9) are estimated using the Bayesian 

approach via a Markov Chain Monte Carlo (MCMC) algorithm 
which can replace the integrals in (9) by sampling of exact event 
times and values of latent random effects from appropriate posterior 
distributions. In order to carry out MCMC, we exploit the stochastic 
representation of the ST distribution by introducing two random 
variables Weij and Wϵij. Based on such stochastic representations, 
the ST distributions of Zij and Yij can be hierarchically formulated in 
conjunction with model (7) as follows.

						               

						                  

						                  10

						                  

Where ( )G . is a gamma distribution, I (Weij > 0) is an indicator 
function. It is noted that the hierarchical model with the ST 
distribution (10) can be reduced to the following three special cases: 
(i) a model with a skew-normal (SN) distribution as eν →∞  and 

1eiξ → with probability 1, (ii) a model with a standard t-distribution 
as 0eijδ = , or (iii) a model with a standard normal distribution as 

eν →∞  and 0eijδ = .

To complete the Bayesian formulation, we need to specify prior 
distributions for unknown parameters in as follows.

						                   11

where the mutually independent Inverse Gamma (IG), Normal 
(N), Gamma(G) and Inverse Wishart (IW ) prior distributions are 
chosen to facilitate computations [32]. The hyper-parameter matrices 

and1, 2, 3, 1, 2, 1 2Λ Λ Λ Ω Ω Γ Γ are assumed to be diagonal for 
implementation convenience.

Combining the likelihood of the observed data and the prior 
distributions for the unknown model parameters, we can make 
Bayesian inference for the parameters based on their posterior 
distributions using the Gibbs sampler algorithm. A freely available 
WinBUGS software [33] is used for fitting the proposed models. Note 
that when using the WinBUGS soft-ware, it is not necessary to specify 
the full conditional distributions explicitly since they are generated 
automatically by the software. Thus, we omit those here to save space.

Application to HIV/AIDS Clinical Data
For illustrating the proposed methods, we analyze real data from 

a clinicalstudy [34]. The study involved 44 HIV-infected patients, 
who were treated with a potent antiretroviral regimen. The outcome 
variable was a viral load which was measured by the number of HIV-
1 RNA copies/mL in plasma, and it was subjected to left-censoring 
due to detection limitation of the assay. Even though it was designed 
that the viral load would be measured at study days 0, 7, 14, 28, 56, 
84, 112 and 140, patients had different follow-up times because of 
missing scheduled visits. Some patients had at most 5 time points for 
follow-up (11%), 6 time points (9.1%), 7 time points (27.3%), and 8 
time points (52.3%). Associated CD4 and CD8 cell counts were also 
measured throughout the study on a similar scheme. In this study, 
the viral load detectable limit was 50 copies/mL, and the RNA viral 
load measures below this limit are not considered reliable and thus 

( ) ( ) ( )
ijcnin

i 1 ij i i ij i i
j 1

L ;D S 1| u ,a y | a , bPr f=
=

 θ = ∏ ∫ ∫ ∫ = ∏

( )) ( ) ( )
1 cij1 p s 1|u , p s 1|u , | , ]r ij i i ij i i i ira a F a b
−× − = + = ρ

( ) ( )( ) ( )( ( )1 ddi * iz |a log |a ,b log L | a , b ] |a ,bij i i i i i i i ii if F R F S
− × − ζζ  ζ 

( ) ( ) ( )u a bi i i i i if f f du da db×

( ) ( ) ( ) ( ) ( ) ( )' '
i 0 1 i 2 i*log T , |a ,b | , 1 ; | , / Ti i i i i i i i i i ii i ii

a b
S f a b d f a b

+ +ζ −γ −γ −γ
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treated as missing. The natural logarithmic transformation of viral 
load is used in the following analyses. Even after log transformation, 
the distribution of viral load is nonsymmetric as shown in Figure 2a.

Specification of models

In the next subsections, the specific components of the proposed 
joint two-part bent-cable Tobit models (JTBTM) will be described 
and fitted to this data set.

Logistic mixed-effects model: HIV/AIDS data suffer from left 
censoring. As the result, a Tobit model can be extended to involve two 
parts: (i) the first part contains the effect on the probability that the 
response variable is above LOD, and (ii) the second part contains the 
bent-cable skew-t models presented in Section 4.1.3 for the viral load 
data. The first part is modeled using a mixed-effect logistic regression 
given as

				  

						                  12

where ( )1| ,aij i iPr S u= is the probability of an HIV patient 
being a progressor (having viral load greater than LOD or rebound), 
the parameter vector ( ) '1, 2, 3,η = η η η represents population-level 
coefficients, and ( )2~ N 0,u ui σ .The covariate *Zij

 is the true value 
estimated from the following covariate measurement error model for 
Zij

						                  13

where 

( ) ( ) ( ) ( )* 2, '1 i1 2 i2 3 i3 1, 2, 3,ij ij ijZ a a t a t= α + + α + + α + α = α α α

is a vector of fixed-effects parameters and 
			  are individual-specific random-effects. To simplifying the estimation 

process of the model in (13), we standardized the time-varying 

covariate CD4 cell counts by subtracting 375.46 and dividing by 
228.57. We also rescaled the original time tij (in days) to be between 0 
and 1.

Response model: For the JTBTM, the response variable is the viral 
load. The goal is to assess the structure of the phasic changes of 
the viral load over time, from being a decreasing trend in the first 
segment to an increasing one at later stage (see Figure 1 and Figure 
2(b)). Identifying these phasic changes is also central to making sound 
decisions for treatment management and care of patients with AIDS. 
Based on this substantive consideration, we t the following bent-cable 
Tobit model to the HIV viral load data over time 

						                  14

where 
ijY is the natural logarithmic transformation of the viral 

load for the ith subject at time tij ; 1i, 2i, 3i,β β β

are defined in (6) and q(.) is described below (5). 
Another useful parameter is the critical time point at which 
the response mean trajectory takes an upward trend from a 
decreasing trend. This time point is located at 21 2 2 2

3
− −φ φ β φ

β
[6]. 

( )
i

2
in ni, 2 e ni , e ni0, I Ii1ei =(e ,....,e )'~S νΓ σ δ .

Time-to-event model: Along with the response variable in the HIV/
AIDS data, the time to the first decline in the CD4/CD8 ratio for the 
ith subject, Ti, is also jointly modeled. Ti cannot be observed but is 
only known as being contained in some time interval, giving interval-
censored data. Using the interval-censored data, we consider the 
following specification of AFTM for time to first decline of the CD4/
CD8 ratio.

						                  15

where ( )i i1 i2 i2 i4K 1,a ,a , b , b '= with associated unknown 
coefficients 0 1 2 3 4( , , , , )γ = γ γ γ γ γ In model (15), the random-
effects bi2 and bi4 represent individual variations in the r stand second-
phase viral decay rates, respectively, so they may be predictive of 
event times. While bi1 and bi3 represent variations in the baseline 
viral loads, they do not appear to be highly predictive of event 
times, so they are excluded from the model to reduce the number of 
parameters. The random-effects ai1 and ai2 capture the main features 
of individual CD4 trajectories. For the HIV/AIDS data analysis, 
Model (15) formulates the dependence between the longitudinal 
model in (14) and the time-to-event model by making them share 
common random effects.

Data analysis

For the JTBTM, the distribution of the viral load is highly skewed 
even after log-transformation. Thus, a nonsymmetrical skew-elliptical 
distribution for the error term is proposed. Accordingly, we consider 
(i) Model I: A joint bent-cable Tobit model with independent 
multivariate normal distributions of random errors for both the 

Figure 2: (a) Histogram of viral load on log scale; (b) spaghetti plot of viral 
load on log scale; (c) spaghetti plot of CD4 cell count, measured from 44 
patients in an AIDS clinical trial study.

2
1 1 2 2 3 3( ) ( ) ( ) ,ij i i ij i ij ijz t tα α α α α α= + + + + + + ∈

2log( ) , (0, ),i i i iT k N ζγ ε ε σ= + { } † * *
1 2 3log Pr( 1| , ) ( , , )ij i i i j ij ij ij iit S u a m t z t z uη η η η= = = = + + +

( ) ( )a ,a ,a '~ 0,i1 i2 i3 ai 3a N= ∑

ijt

*
1 2 3 ( , ) ,ij ij i i ij i ij i ijy z t q t eη β β β α= + + + +

( )44, .ii=1,....,n= j=1,....,n
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response model (14) and the covariate model (3); (ii) Model II: A joint 
bent-cable Tobit model with independent multivariate skew-normal 
distributions of random errors for both the response model (14) and 
the covariate model (3); and (iii) Model III: A joint bent-cable Tobit 
model with independent multivariate skew-t distributions of random 
errors for both the response model (14) and the covariate model (3).
The parameters of JTBTM are estimated using the Bayesian approach. 
For the Bayesian inference, we specify the prior distributions of these 
pa-rameters. Accordingly, we take non informative prior distribution 
for (i)fixed-effects as independent normal distribution N(0; 100) for 
each component of the population parameter vectors , , andα β η γ
(ii) variances as an inverse gamma prior distribution IG(0:01; 0:01) 
each for 2 2 2

e u, andεσ σ σ ,so that the distribution has mean 1 and 
variance 100. (iii) The priors for the variance-covariance matrices 
of the random-effects a band∑ ∑ are taken to be inverse Wishart 
distributions IW(Ω1;ρ1) and IW(Ω2;ρ2) with covariance matrices Ω1 
= diag(0:01; 0:01; 0:01), Ω2 = diag(0:01; 0:01; 0:01; 0:01) and 1 = 3; 2 
= 4, respectively. (iv)The degrees of freedom parameters 1ν and 2ν  
follow truncated exponential distribution with 10ν  = 20ν  = 0:5. (v)

For each of the skewness parameters eδ and εδ , we choose 
independent normal distribution N(0; 100), where we assume that 

ei e ni1δ = δ and i ni1ε εδ = δ . Estimation of model parameters 
was carried out using the MCMC algorithm via WinBUG [33]. 
Convergence of the MCMC algorithm was assessed using several 
available tools within WinBUGS. First, we inspected how well the 
chain was mixing by inspecting trace plots of the iteration number 
against the values of the draw of parameters at each iteration. Few 
parameters took longer iterations to mix well, up to 100,000 iterations, 

and thus we discarded the first 100,000 iterations as burn-in. Second, 
assessment of convergence was done by monitoring autocorrelations 
between the draws of the MCMC sampler after additional 400,000 
iterations. Auto-correlations were small after using a thinning of 40, 
giving a good mixing.

Third, the Markov chain (MC) errors were less than 5% of 
posterior standard eviation values for the parameters, indicating good 
precision and conver-gence of MCMC [35]. Finally, we obtained 
10,000 samples for subsequent posterior inference of the unknown 
parameters of interest. The computational burden to run MCMC 
for Model II, for example, was close to14 hours on Latitude E5540, 
Intel(R) Core(TM)i7-4600U @2.10GHz.

Analysis results

The results of fitting JTBTM to the HIV/AIDS data are given 
in Tables 1-3. Table 1 presents the comparison among Models I-III 
using Bayesian model selection criteria (DIC = Deviance Information 
Criterion, EPD = Expected Predictive Deviance and RSS = Bayesian 
Residual Sum of Squares). According to these criteria, Model II have 
the smallest DIC (354.617) and RSS (.203) values, while the EPD 
(.064) value is very close to that of Model III. Overall the results 
suggest that Model II is relatively the best model as compared to 
Models I and III. In addition, the goodness-of-t diagnosis plots of (i) 
residuals versus fitted values (left panel), (ii) observed values versus 
fitted values (middle panel) and (iii) Q-Q plots of the residuals (right 
panel) for Models I-III are displayed in Figure 3. It can be seen from 
the plots in the left and middle panels that Model II (skew-normal) 
provides a better t to the observed data as compared to Model I 
(normal) and Model III (skew-t). This finding is further confirmed 
by the Q-Q plots of the residuals (right panel) in which Model II 
has few extreme values showing a better goodness-of fit to the data 
than either Model I or Model III. Thus, Model II is considered as 
the 'best' model which accounts for phasic changes, skewness, left-
censoring and time to event. The implication of the finding is that a 
skewed bent-cable model is a better choice for fitting the logarithmic 
transform of the continuous component of the viral load (RNA) data                                                             
(Table 1 and Figure 3).

JTBTM is also flexible to predict missing values below LOD. 
The predicted values are depicted in Figure 4. Figure 4(a) displays 
the distribution of the observed but inaccurate values, while Figures 
4(b-d) show the histograms of the Bayesian predicted values under 
normal, skew-normal, and skew-t, respectively. Note that the dotted 
vertical line represents log (50) = 3.912 (LOD). We can see from the 
histograms that the left-censored, inaccurate values are stacked up 
in the lower end of Figure 4(a), whereas the predicted values are 
spread out as expected for the other plots. Thus, JTBTM under skew-
normal gives relatively more compact predictions of missing values 
below LOD than both JTBTM under normal and JTBTM with skew-t, 
implying that JTBTM with skew-normal (Model II) is a better model. 

Figure 3: Plots of goodness-of-t statistics for the three Models: (i) The left 
panel shows the residual against the fitted values, (ii) the middle has plots of 
the fitted against observed log(RNA) values and (iii) the right panel has the 
Q-Q plots of residuals.

Table 1: Model comparison using Bayesian model selection criteria (RSS = 
Residual Sum Of Squares, EPD= Expected Predictive Deviance).

Criterion Model I Model II Model III

DIC 1322.11 354.617 598.5

RSS 266.905 0.203 1.432

EPD 2.603 0.064 0.053
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Next, we discuss and interpret the results of fitting Model II to the 
AIDS data.

Results of Model II: The Baysian analysis results for the response 
model (14), particularly for Model II which gives the best model t, are 
presented in the middle row of Table 2. The first part of the response 
model is the logit model (12) which describes the probability of 
an HIV patient having viral loads above the lower detection limit, 
leading to progression to AIDS. Looking at the logit part for Model 
II in Table 2, the posterior mean for the coefficient of time effect (2) 
on the probability of an HIV patient becoming a progressor over time 
is 2.601 with a 95% credible interval (1.354; 3.916) which does not 
contain zero. The corresponding odds ratio is exp(2:601) = 13.477, 
suggesting that over time after the initial treatment, patients are 
approximately 13.477 times more likely to have viral loads above 
detection limit. That is, as time increases, the probability that the 
value of viral load is coming from the skew-normal distribution 
also increases. It is noted that the effect of CD4 turned out to be 
nonsignicant after adjusting for the effect of time.

The second part of the response model is the log-nonlinear 
model (14), which describes the bent-cable model for viral loads. The 

posterior means for 1β  and 2β , which are the incoming intercept and 
slope of the first phase, are 4.48 and -747, respectively; the posterior 
mean of the parameter 3 rep-resenting the change in slope between 
the incoming first phase and outgoing linear phase is 1.079. The 
posterior mean of the center of the bent-cable model, ϕ1, is 9.327, 
and for ϕ2, which is the half-width of the bend, the estimate is 
9.239. These results suggest that the typical viral load phasic patterns 
approximately begin from the time of initiation of treatment and 
last for about 9.327 + 9.239 = 18.566 weeks, followed by a linear 
rebound of viral load with a slope of 1.079. The posterior mean of 
the scale parameter 2

eσ  is .032 which is relatively small as the result 
of taking into account skewness of the data. The posterior mean of 
the skewness parameter eδ is 2.013 with a 95% credible interval of 
(1.663, 2.458). This positive and strong estimate confirms the fact that 
the distribution of the HIV/AIDS data is skewed even after taking 

Figure 4: Predicted values below limit of detection for viral load (RNA). The 
limit of detection is at log (50), shown by the dotted vertical line.

Figure 5: Fitted bent-cable growth curve for log (viral load). The dotted 
vertical lines represent the lower ( 1φ ) and upper ( 2φ ) limits of the 
gradual transition period with center at 1φ = 9:327 weeks (solid vertical 
line); an estimated critical time point is C Time = 12:877 weeks.

Table 2:  A summary of the Posterior Means (PM) of population parameters along with the Corresponding Lower Limit (LCI) and upper limit (UCI) of 95% equal-tail 
credible interval.

Log-nonlinear Part Logit Part

Model β1 β2 β3 ζ ϕ1 ϕ2 η1 η2 η3
2
eσ δe

I PM 7.656 -1.182 1.318 -1.107 4 5.198 -3.573 2.595 0.448 1.349 1.507 -

LCI 5.006 -1.994 0.858 -1.567 0.923 2.771 -4.726 1.328 -0.057 1.069 0.097 -

UCI 8.493 -0.732 2.145 -0.682 6.202 8.18 -2.631 3.947 1.06 1.689 4.381 -

II PM 4.48 -0.747 1.079 -1.05 9.327 9.239 -3.574 2.601 0.417 0.032 1.498 2.013

LCI 3.355 -1.537 0.606 -1.503 2.46 3.49 -4.703 1.354 -0.113 0.004 0.14 1.663

UCI 5.459 -0.356 1.712 -0.626 22.18 21.25 -2.657 3.916 1.033 0.142 4.355 2.458

III PM 4.595 -0.767 1.54 -0.889 13.52 21.15 -3.561 2.597 0.408 0.02 1.482 2.203

LCI 3.685 -0.9225 1.186 -1.306 10.29 16.78 -4.69 1.368 -0.111 0.003 0.091 1.959

UCI 5.462 -0.638 2.105 -0.505 19.53 27.94 -2.631 3.921 1.031 0.077 4.33 2.465

2
uσ
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the log-transformation. Thus, incorporating skewness parameter in 
modeling the data is highly recommended.

Graphically, the log-nonlinear model (bent-cable curve) is 
displayed in Figure 5. It can be seen that patients show decline in viral 
load after receiving the ARV treatment with a gradual transition period 
up until ^ϕ1 + ^ϕ2 =18.566 weeks. This shows that the reduction of 
production of viral load after treatment is stronger at the beginning of 
the study but does not last long. Right after approximately 19 weeks 
in the study, patients experiencea significant linear increase at the 
rate of 1.079 log viral load per week (the right dotted line in Figure 
5). The Critical Time (C Time) point at which the response mean 
trajectory takes an upward trend from a decreasing trend is estimated 
to be 12.877 weeks after the start of treatment. Thus, the bent-cable 
curve of viral load after receiving treatment suggests that the effect 
of treatment decreases over time and thus providing less protection 
against the multiplication of HIV virus. This explains why we see the 
upward linear curves towards the latter stage of the study.

For Model II, the posterior means of the parameters of the CD4 
covariate model (3) are presented in the upper part of Table 3. The 
posterior mean of the time effect ( 2α ) on observed CD4 cell counts 
with measurement error is .727 with a 95% credible interval of (:133; 
1.208). The 95% credible interval does not contain zero, suggesting 
that there is a strong, positive linear relationship between CD4 cell 
count and measurement time. The quadratic effect ( 3α ) of time 
on CD4 count is found to be nonsignificant as the corresponding 
95% credible interval includes zero. The posterior mean of the scale 
parameter 2

εσ of the covariate model is .082 for Model II which 
accounts for skewness. The lower part of  Table 3 contains the 
estimates of parameters of AFTM in (15) for the first decline of CD4/
CD8 ratio. The posterior means of these parameters have 95% credible 
intervals containing zeros, indicating that time to first decrease of the 
CD4/CD8 ratio is not strongly associated with either the bent-cable 
rates or the CD4 covariate measurement error rates over time. This 
finding is similar to that of [31].

Discussion and conclusion
The focus of this paper is to develop a bent-cable mixed-effects 

Tobit model which simultaneously incorporates two-part censored 

response process and time to event process. The processes are joined 
by using random effects that characterize the slopes of individual-
specific bent-cable trajectories, CD4 covariate measurement 
error and time to first decrease of CD4/CD8 ratio. The bent-cable 
trajectories of the HIV/AIDS data is assumed to have a mixture of 
two distributions: a point mass below the limit of detection with 
non-zero probability and a skew-normal distribution that was 
found to be the best fit to the data. These two parts of the mixture 
are modeled using a logistic mixed-effects regression (12) and a log-
nonlinear bent-cable regression (14). The former regression assesses 
the effects of covariates on the probability of classifying patients as 
having their viral loads coming from the skew-normal distribution, 
leading potentially to higher chance of disease progression. The 
findings indicate that patients, who received a treatment at baseline, 
are approximately 13.477 times more likely to have viral loads above 
detection limit over time, increasing the chance of progression to 
AIDS. The results of fitting the log-nonlinear bent-cable regression 
(see Figure 5) show that a significant decline (incoming trend with 
a slope 2β  = -.747) in viral load is followed by a gradual transition 
period upward until 18:566 weeks since initiation of treatment. Thus, 
the bent-cable mixed-effects Tobit model has flexibility to account 
for heterogeneity in the left-censored response variable and provide 
precise estimate of the time at which drug resistance will develop 
(rebound).

Though the proposed bent-cable mixed-effects Tobit model 
deals with clumped data at lower detection limit, the model can also 
are used to analyze right-censored data. Either way, it is important 
to properly incorporate censoring effects in a longitudinal data 
analysis. Our proposed models with skew distributions make best 
use of both censored and uncensored data information. In addition 
to the presence of censoring effects, when there is skewness in the 
longitudinal data and covariate measurement errors, the Bayesian 
approach is a powerful tool to jointly model time-to-event and 
longitudinal response with skewness and left-censoring. The Bayesian 
estimation of the parameters of the proposed models was carried out 
using the publicly avail-able WinBUGS package [33], making the 
procedure quite powerful and accessible to practicing statisticians in 
the field.

Table 3: A summary of the Posterior Means (PM) of parameters of covariate and time-to-event models along with the Corresponding Lower Limit (LCI) and Upper Limit 
(UCI) of 95% equal-tail credible interval.

Model I Model II Model III

PM LCI UCI PM LCI UCI PM LCI UCI

Covariate Model

α1 -0.913 -1.214 -0.606 0.362 -0.029 0.701 -0.872 -1.175 -0.453

α2 0.67 0.166 1.175 0.727 0.133 1.208 0.67 0.239 1.108

α3 -0.292 -0.84 0.262 -0.324 -0.873 0.282 -0.277 -0.748 0.236

σϵ2 0.062 0.031 0.097 0.082 0.052 0.117 0.069 0.039 0.112

Time-to-event Model

γ0 3.142 2.893 3.388 3.175 2.941 3.413 3.155 2.932 3.367

γ1 -0.053 -0.849 0.6 -0.297 -1.087 0.429 -0.248 -1.043 0.331

γ2 0.444 -1.326 1.711 0.954 -0.723 2.078 1.378 0.678 2.351

γ3 -1.86 -4.384 1.5 -1.083 -3.677 1.482 -0.377 -2.227 1.352

γ4 -0.512 -2.033 0.827 -0.29 -1.688 0.803 -0.046 -0.831 0.659

0.133 0.111 0.161 0.133 0.11 0.161 0.134 0.111 0.1612
4σ
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Despite being the best fit to the longitudinal viral load and time-
to-event data, JTBTM has a limitation. It is not intended to be an 
exhaustive study of the HIV/AIDS dynamic profiles. We considered 
a small number of covariates, particularly CD4, which are related to 
viral load, a priori. However, it would be straightforward to extend the 
proposed methods for incorporating several covariates. Goodness-of 
fit of the proposed models to the data could have been improved by 
using more stringent methods such as cross-validation prediction. 
Unfortunately, in our case we have a small data set (44 patients) 
and splitting such a data set into two subsets for cross-validation 
would reduce the precision of the model fits. In summary, we have 
illustrated that the Joint Two-Part Bent-Cable Tobit Models (JTBTM) 
are very flexible and capable of fitting phasic patterns of a response 
process with a high proportion of data at a detection limit and 
skewness, covariate measurement error and time-to-event process 
simultaneously. For making reliable conclusions and appropriate 
clinical decisions, particularly for intervention studies, JTBTM 
with skew distributions holds a promising future for applications in 
various areas such as hepatitis C virus (HCV) RNA [36].
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