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Polynomial Regression Models

Michele Nichelatti*
Service of Biostatistics, Niguarda Ca’ Granda Hospital, Italy

Abstract
It is presented a method useful to form ordinary differential equations from nonlinear regression models of the type 

1
1 1 0

−
−= + + + +

n n
n ny a x a x a x a , a power series allowing to directly retrieving the differential model from raw data after fitting, to be 

compared with the differential model expected for the biological system which is studied. In particular for any possible value of n, the highest 
power at which the independent variable is raised, the paper gives the method to get the differential equation having the polynomial as 
solution. The use of power series allows some practical advantages when dealing with differential equations, and one of these - in some 
cases - is the capability of retrieving a function as solution of differential equation without having to know the specific rule to solve the 
differential equation itself.
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Introduction
In some cases, to obtain an estimate of the behavior of 

dependent variable with respect to an independent one can 
be just the first task, and we would be much more interested 
in retrieving from the regression the differential equation 
governing the system [1]. For example, when dealing with a 
linear regression model given by the simple equation

1 0= +y a x a                                                     (1)

Where x is the independent variable, and y is the dependent 
one, 0 1, 0≠a a  being two arbitrary constants, the differential 
equation governing the system may be easily obtained deriving 
with respect to x both sides of equation (1)

1∂ =x y a                  (2)

so that, inserting equation (2) into equation (1) gives the 
differential equation 

0 0∂ − + =xx y y a                 (3)

having equation (1) as general solution. Equation (3) is a linear 
first order ordinary differential equation, also known as Clairaut’s 
equation. 

Equation (1) is the simpler form of a power series of the 

type 
0

+∞

=
=∑ k

kk
y a x , which is widely used in mathematics: for 

example, it can be used to solve the Malthus differential equation 
without utilizing any solution technique proper of differential 
equations; indeed, it is enough to know its first derivative 

1
0

+∞ −
=

∂ =∑ k
x kk
y ka x  and the power series of the exponential 

function 
0 !

+∞

=
=∑

k
x

k

xe
k

 [2]; in particular, the power series with 

a maximum finite power m (now a polynomial) shows both real 
and complex roots, depending on its possible factorization. 

Polynomials are used in mathematics to approximate various 
kinds of function [3], but they are also used to model a wide range 
of phenomena in physics, social science and economics [4], as 
well as in biological ones, like in the systems governed by a mass 
action law or in the Lotka-Volterra predator-prey systems [5].   

Differential Equations from Polynomial Models
The approach to polynomial univariate models is quite more 

complicated than those used for equation (1). Assuming a result 
of the type

2
2 1= +y a x a x                  (4)

We will face with two arbitrary constants a1, a2 such that the 
first and second derivatives respectively are

2 12∂ = +x y a x a                 (5)

2
22∂ =xx y a .                 (6)

In this case, and in all next cases, we tacitly assume that y is 
continuous and derivable at least n times over its domain and 
that none of the coefficients are zero, so that we can eliminate the 
a2 constant, since we have

2
2

1
2

= ∂xxa y                    (7)

and therefore, first of equations (5) reads
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2
1∂ = ∂ +x xxy x y a                    (8)

with 
2

1 = − ∂ + ∂xx xa x y y                    (9)

thus, inserting the values found for a1, a2 in equation (4), we 
obtain 

2 2 2 21 0
2

∂ − ∂ + ∂ − =xx xx xx y x y x y y                 (10)

Hence

2 21 0
2

− ∂ + ∂ − =xx xx y x y y                 (11)

equivalent to
2 2 2 2 0∂ − ∂ + =xx xx y x y y                (12)

which is the differential equation having equation (4) as general 
solution.

Now, using the third-degree regression result
3 2

3 2 1= + +y a x a x a x                (13)

and calculating the derivatives
2

3 2 13 2∂ = + +x y a x a x a                  (14)

2
3 26 2∂ = +xx y a x a                 (15)

3
36∂ =xxx y a                  (16)

we get from equation (16)

3
3

1
6

= ∂xxxa y                  (17)

So that, inserting this value into equation (15) leads to
2 3

22∂ = ∂ +xx xxxy x y a               (18)

giving

2 3
2

1 ( )
2

= ∂ − ∂xx xxxa y x y                 (19)

which, inserted into equation (14) gives

2 3 2
1

1
2

∂ = − ∂ + ∂ +x xxx xxy x y x y a              (20)

and

2 3 2
1

1 .
2

= ∂ + ∂ + ∂xxx xx xa x y x y y               (21)

At this point, we can use the values of a1, a2 and a3 respectively 
found in equations (21), (19) and (17), ad insert them into 
equation (13), to obtain 

3 3 2 2 3

2 3 2

3 3 2 2

1 1 ( )
6 2

1 ( )
2

1 1
6 2

= ∂ + ∂ − ∂ +

∂ − ∂ + ∂

= ∂ − ∂ + ∂

xxx xx xxx

xxx xx x

xxx xx x

y x y x y x y

x x y x y y

x y x y x y

             (22)

thus, the differential equation is
3 3 2 23 6 6 0.∂ − ∂ + ∂ − =xxx xx xx y x y x y y            (23)

Now, let us take into accounts the fourth-degree regression 
model:

4 3 2
4 3 2 1= + + +y a x a x a x a x              (24)

with the usual procedure, we calculate
3 2

4 3 2 14 3 2∂ = + + +x y a x a x a x a               (25)
2 2

4 3 212 6 2∂ = + +xx y a x a x a              (26)
3

4 324 6∂ = +xxx y a x a               (27)
4

424 .∂ =xxxx y a                   (28)

Thus, after a little algebra, and avoiding intermediate steps:

4
4

1
24

= ∂xxxxa y                 (29)

4 3
3

1 ( )
6

= ∂ − ∂xxxx xxxa y x y                  (30)

2 4 3 2
2

1 ( 2 2 )
4

= ∂ − ∂ + ∂xxxx xxx xxa x y x y y               (31)

3 4 2 3
1

2

1 ( 3
6

6 6 )

= − ∂ − ∂ +

∂ − ∂

xxxx xxx

xx x

a x y x y

x y y
               (32)

hence, we obtain the differential equation having equation (24) 
as general solution 

4 4 3 3

2 2

4

12 24 24 0.

∂ − ∂ +

∂ − ∂ + =
xxxx xxx

xx x

x y x y

x y x y y
                (33)

A Possible Generalized Method
In finding the differential equation ruling the nonlinear 

regression model we observed an evident pattern, which can be 
invoked for whichever degree of the regression model we are 
dealing with.

Indeed, for the nonlinear regression model of unspecified 
degree m

1 2
1 2

3 2
3 2 1

1

− −
− −

=

= + + + +

+ + =∑



m m m
m m m

m
n

n
n

y a x a x a x

a x a x a x a x
              (34)

the differential equation is

1
2 2 1 1

1

2 2
2 2 2 2 2

2 2

1 1 0

! !( 1) ( 1)
! ( 1)!

! !( 1) ( 1)
( 2)! 2!
! !( 1) ( 1) 0,

1! 0!

−
− −

−

−
− − +

−

+

∂ ∂
− + − +

−∂ ∂

∂ ∂
− + + − +

− ∂ ∂
∂

− + − =
∂



m m
m m m m

m m

m
m m m

m

m m

m y m yx x
m mx x

m y m yx x
m x x

m y mx x y
x

              (35)
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but, since !
!

1=m
m , and since ! !

1! 0!
!= =m m m , to reduce the 

mathematical formalism in the differential equation (35), we can 
rewrite it as

1
2 1 1 2 2

1

2 2
2 2 2

2 2

1

!( 1) ( 1)
( 1)!

! !( 1)
( 2)! 2!

( 1) ! ( 1) ! 0,

−
− − −

−

−
− +

−

+

∂ ∂
+ − + −

−∂ ∂

∂ ∂
+ + − +

− ∂ ∂
∂

− + − =
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m m
m m m m

m m

m
m m

m

m m

y m yx x
mx x

m y m yx x
m x x

ym x m y
x

              (36)

This model works for equations (33), (23) and (12), where m 
was respectively equal to 4, 3, and 2. We can now try to see what 
will occur if m = 5: in this case, equation (36) reads

5 4 3 2
5 4 3 2

5 4 3 25 20 60 120 120 0,∂ ∂ ∂ ∂ ∂
− + − + − =

∂∂ ∂ ∂ ∂
y y y y yx x x x x y

xx x x x
(37)

which is a Euler-Cauchy linear homogeneous differential 
equation, which can be solved at least with two methods. Using 
the simpler one, which is to assume that a solution will be of 
the form = ky x  (in which >k n  is an arbitrary integer), and 
imposing this substitution in equation (37), where we also 
assume 0≠x , we will find that, in general,

( 1)( 2) ( 1) −∂
= − − − +

∂


n k
k n

n
x k k k k n x

x
          (38)

so that we obtain the polynomial in k 

5 4 3 215 85 225 274 120
( 1)( 2)( 3)( 4)( 5) 0

− + − + − =
− − − − − =

k k k k k
k k k k k

              (39)

and the individual solutions 1 1=y a x , 2
2 2=y a x , 3

3 3=y a x , 
4

4 4=y a x , and 5
5 5=y a x , so that the solution of the differential 

equation (37) is 

5 4 3 2
5 4 3 2 1 5 4 3 2 1= + + + + = + + + +y y y y y y a x a x a x a x a x    (40)

exactly corresponding to what expected. 

If regression model contains a constant term, so that 

0=

=∑
m

n
n

n

y a x                (41)

then, if we assume a0 = k, it is immediate to see that the differential 
equation forming from the model given by equation (41) is

1
2 1 1 2 2

1

2 2
2 2 2

2 2

1 1
0

!( 1) ( 1)
( 1)!
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( 1) ! ( 1) ! ( 1) ! 0,

−
− − −

−

−
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−

+ −

∂ ∂
+ − + −
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∂ ∂
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∂
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m m
m m m m

m m

m
m m

m

m m m

y m yx x
mx x

m y m yx x
m x x

ym x m y m a
x

            (42)

For example, if the regression model is

5 4 3 2
5 4 3 2 1 1= + + + + +y a x a x a x a x a x               (43)

the differential equation is

5 4 3
5 4 3

5 4 3

2
2

2

5 20

60 120 120 120 0.

∂ ∂ ∂
− + −
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∂ ∂

+ − + =
∂∂

y y yx x x
x x x

y yx x y
xx

              (44)

Discussion
When dealing with the analysis of a biological system, usually 

one expects to apply a given dynamical model [6] to the data. Here, 
the data are used after fitting to retrieve the ordinary differential 
equation having the fitted equation as general solution: however, 
despite the differential model arising from the regression, we 
must point out that a nonlinear autonomous differential equation 
of the type 

2 3 2 1
... ... ... 0− +∂ ∂ ∂ ∂ ∂ ∂ =

n n n
x xx xxx x x x x x xy y y y y y y               (45)

has a solution (e.g., the highest grade one) equal to
1

1
2 2

2 2 1 0

( )

,

−
−

−
−

= + +

+ + + +

n n
n n n

n
n

y x c x c x

c x c x c x c
                (46)

which is equivalent to equation (41), while other solutions are 

1( ) 0− =y x , 0 0( ) =y x c , 1 1 0( ) = +y x c x c , 2
2 2 1 0( ) = + +y x c x c x c , 

3 2
3 3 2 1 0( ) = + + +y x c x c x c x c ,…, and so on; indeed, from equation 

(45) we see that 
2 3

2 1
... ... ... 0− +

= ∂ = ∂ = ∂ = =

∂ = ∂ = ∂ =

x xx xxx
n n n
x x x x x x

y y y y

y y y
             (47)

e.g., all are solutions of equation (45).

However, in this paper, the case is limited to a simple nonlinear 
univariable model, but the differential equation obtained “from 
scratch” can be used to be compared to the differential equation 
one expects to rule the system. 

Conclusion
When dealing with the analysis of a biological system, 

usually one expects to apply a given dynamical model [3] to 
the data. In this paper, the data are used after fitting to retrieve 
the ordinary differential equation having the fitted equation 
as general solution. It is mandatory to verify if the differential 
model retrieved from the fitted regression result may actually 
apply to the system one is studying, so that it is always advisable 
to look at possible differential models expected for the, system, 
based on its expected behavior, and this may include any kind 
of possibilities (for example, if one should expect any oscillatory 
behavior), so that the expected potential differential behavior 
may be compared with the differential equation arising from 
possible regression models.    

References
1. Taubes CH. Modeling differential equations in biology. Prentice Hall, 

Upper Saddle River, USA. 2001.

https://www.researchgate.net/publication/226259995_Modeling_Differential_Equations_in_Biology
https://www.researchgate.net/publication/226259995_Modeling_Differential_Equations_in_Biology


4/4SM J Biometrics Biostat J 5: 4

2. Fässler A. Fast track to differential equations. Springer Nature 
Switzerland, Cham, CH. 2019.

3. Timan AF. Theory of approximation of functions of a real variable. 
McMillan, New York, USA. 1963. 

4. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical 
Recipes: The Art of Scientific Computing, 3rd Ed. Cambridge University 
Press, New York, USA. 2007. 

5. Szederkenyi G, Magyar A, Hangos K. Analysis and control of polynomial 
dynamic models with biological applications. Academic Press, London, 
UK. 2018.

6. Gros C. Complex and adaptive dynamical systems, 4th Ed. Springer 
International Publishing, Cham CH. 2015.

https://www.elsevier.com/books/analysis-and-control-of-polynomial-dynamic-models-with-biological-applications/szederkenyi/978-0-12-815495-3
https://www.elsevier.com/books/analysis-and-control-of-polynomial-dynamic-models-with-biological-applications/szederkenyi/978-0-12-815495-3
https://www.elsevier.com/books/analysis-and-control-of-polynomial-dynamic-models-with-biological-applications/szederkenyi/978-0-12-815495-3

	Forming the Differential Equations from Simple Polynomial Regression Models
	Abstract
	Introduction
	Differential Equations from Polynomial Models 
	A Possible Generalized Method 
	Discussion
	Conclusion
	References

