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Abstract

The immune response after stroke is known to play a significant role in ischemic brain. The inflammatory 
messages let out by immune contacts activated by brain damage sets off a complex series of pathologic events 
which have been progressively recognized as an essential attendant to neuronal death. The primary immune 
mediators contained are glial cells and infiltrating leukocytes, including neutrophils, monocytes, and lymphocyte. 
After ischemic stroke, infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby 
exacerbating brain injury. This review describes how the roles of circulating neutrophils are a double-edged 
sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we 
will concentrate on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke.

Necrotic cell death within the infarcted area causes the release of inflammatory cytokines and 
migration of immune cells. Neutrophils are the first cells accumulated into the brain after stroke. 
The mechanism of neutrophil entry into the brain after stroke was investigated in permanent and 
transient experimental stroke models with in vivo imaging. Bloodborne neutrophils immediately 
migrate, even against blood flow, and then transmigrate out of blood vessels to reach the injured 
brain area [1]. The zenith of neutrophil invasion is achieved between two and three days after stroke 
[2]. The Blood Brain Barrier (BBB) blocks the entry of immune cells into the brain. But, neutrophil 
entry is enabled    by  regional BBB breakdown caused by ischemia [3]. The effect of immune cell 
migration is a controversial topic. Although immune cells might play a significant role in the tissue 
repair, their harmful impacts dominate. This was showed in experimental settings, where invading 
neutrophils increased ischemic neurotoxici   ty through different  effects [4].Neutrophils produce 
Reactive Oxygen Species (ROS), like superoxide radicals and hydrogen peroxide when they are 
activated. Nonetheless, they send enzymes(cathepsin G, collagenase, gelatinase, and heparinase), 
which promote to ROS-mediated vascular damage.Neutrophils can enable complement and release 
cell content, during suicidal extra cellular. This antibacterial  mechanism involves in the neutrophil 
elastase, which was demonstrated to remain vessel permeability [5,7]. Additionally, neutrophil 
release of proinflammatory mediators initiates a self-energizing cascade of proinflammation and 
destruction. Resident microglia can fight this detrimental damage to a minor extent, by engulfing 
neutrophils [4]. These adverse effects of neutrophils make them a prime target for novel therapies for 
stroke. Indeed, in experimental focal brain ischemia models, a variety of therapeutic interventions 
successfully reduced lesion size. One approach was to block pro-inflammatory cytokines and 
mediators. For instance, antagonization of C-X-C motif chemokine receptor 2 (CXCR-2) protected 
reinforcement of cells to the infarct area [8]. Alternative neutrophil chemoattractant, chemokine 
(C-X-C motif) ligand 1 (CXCL-1), is induced by interleukin17 (IL-17), which is released by T-cells. 
Blocking this pathway with an anti-17-antibody decreased the size of lesion [9]. Additionally, 
neutrophil extravasation was demonstrated to be mediated by very-late-antigen 4 (VLA-4) in a study. 
Thereby, blocking VLA-4 cut down lesion size [26]. A different approach is to block the neutrophil 
pro-inflammatory effects. Oxidative stress, induced an overload of ROS, promotes various acute, 
chronic, and inflammatory diseases. Thus, this mechanism has suggested as a target for therapy. In 
the the trial, beneficial effects were managed by prohibitor type 4 nicotinamide adenine dinucleotide 
phosphate oxidase (NOX4). In experimental models, brain damage was also ameliorated by inhibiting 
myeloperoxidase oxidant (MPO) production, with N-acetyl lysyl-tyrosyl cysteine amide or with 
the flavonoid, eriodyctiol [10,11]. Additionally, neutrophil migration, evaluated by  MPO activity, 
and infarct volume were considerably decreased following the administration of AM-36 ,that is a 
neuroprotectant [12]. Nitric oxide (NO) reproduced by inducible NO synthase (iNOS) promotes to 
brain injury. iNOS expression is overwhelmingly found out in swarming neutrophils after stroke. 
Neutrophils were changed into  tissue of mice, infarct volume enhanced. iNOS is a primary mediator 
of tissue ravage [13]. The inhibition of oxidative radical production was showed to be a proper 
approach in lacunar infarctions [14]. In contrast, A free radical scavenger(Edaravone) increased 
hemorrhagic transformation in patients with cardiogenic embolism [15]. In patients receiving rtPA 
treatment, hemorrhagic  complications are more prevalent in blacks and Asians   it is possible that 
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the higher bleeding rate was caused by ethnic-related reasons [16] . 
Uric acid was thought to conserve the brain from oxidative damage. 
Until now studies investigating the protective effect of UA after 
stroke continue quastinable [17]. While descriptive studies find that 
higher concentrations of UA in serum are beneficial in patients with 
stroke treated with thrombolysis [18,19] the results of the a study  
demonstrated only a beneficial outcome for selected patient groups, 
for instance, women [20]. It  is also known that different elements 
like old age, time to treatment, the extent of the ischemic injury 
before administration of therapy, higher baseline National Institutes 
of Health Stroke Scale score, increased systolic blood pressure, or 
diabetes enhance the risk of hemorrhagic incidence after stroke [21].
For this reason, treatment options might depend on the combination 
of individual factors. Another molecule is the HMGB-1, discussed 
in the modulation of post-stroke immune response. This DNA-
binding protein is emitted during stroke from cells with necrosis. 
This damage-related molecular pattern can be secreted by immune 
cells and is emitted and sustained by platelets promoting thrombus 
formation. Elevated plasma HMGB-1 levels were showed in patients 
with acute ischemic stroke in clinical studies. A correlation between 
HMGB- 1 levels and circulating leukocytes was proved [22]. It was 
also demonstrated that HMGB-1 promoted to tissue destruction 
by recruiting neutrophil [23,24]. Reductions in plasma HMGB-
1 levels with cannabinoids were related to decreases in infarct size 
and number of neutrophil [25]. The rapid early changes beholded in 
different trials could be prevented by blocking-adrenoceptors with 
propranolol or by neutralizing HMGB-1 activity with antibodies 
[26,27]. These treatments were performed before and after stroke 
induction.In addition to upsizing ischemic injury and the subsequent 
signaling cascades.As well as,neutrophils are contained in reperfusion 
injury. The risk of hemorrhagic transformation is increased by as 
much as tenfold after intravenous rtPA administration, mainly 
based on reperfusion injury [27]. Some parameters (high neutrophil 
counts and a high neutrophil-to-lymphocyte ratio) were related to 
poor outcomes for 3 months. [ 28,29]. Similar results were found in 
patients with intracerebral hemorrhage [30]. Interestingly, treatment 
with rtPA induced neutrophil degranulation in experimental trials 
[31]. Granulocyte colony stimulating factor (G-CSF) had a protective 
effect in many  experimental trial. Administration of G-CSF 
diminished infarct size and recovered motor function [ 32]. A recent 
meta-analysis showed that G-CSF did not recruit stroke outcome 
in patients with stroke [33]. And no beneficial effects of additional 
G-CSF administration were showed in experimental model; behalf an 
increased risk of hemorrhage happened within the infarct region at 
72 h after stroke [34]. In these models, neutrophil blood counts were 
enhanced, and neutrophilic activation arrived within 15 min after 
reperfusion, and it continued evident after 24 h [35]. Neutrophils 
may be transporter of hemorrhagic complications after thrombolysis; 
thus, they could represent new targets for neuroprotective strategies 
in patients treated with rtPA. 
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