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Introduction
Depression is a very frequent and recurrent mental disorder, which has been linked to diminished 

daily functioning and quality of life, and increased morbidity and mortality [1]. Depression is 
currently estimated to affect approximately 350 million people worldwide, and is considered the 
leading cause of disability globally [2], associated with high direct and indirect costs which may 
amount to up to $210.5 billion each year [3].

A significant portion of the personal, medical and economic burden entailed by depression 
stems from its association with a myriad of medical conditions, including various gastrointestinal 
and metabolic disorders [4] autoimmune disorders [5], cancer [6], and Cardiovascular Disease 
(CVD) [7], among others; highlighting the tight link between mental and somatic well-being. The 
association between depression and CVD is especially relevant, as both of these conditions have 
become worldwide epidemics. At present, CVD is the leading cause of morbidity and mortality 
globally, accounting for approximately 17.5 million deaths yearly, and representing 31% of all global 
deaths [8]. Furthermore, up to 15% of subjects with CVD may have comorbid depression [9].

Notwithstanding this epidemiologic outlook, very little has been firmly established regarding 
the mechanisms underlying this association between depression and CVD, as well as its implications 
in clinical practice [7]. Nevertheless, emerging views on depression as the result of chronic 
dysregulation of a systemic stress response may contribute to the bridging of this gap [10]. Indeed, 
various physiological components of the stress response which are also often found in depressed 
individuals –such as Insulin Resistance (IR), systemic inflammation and a pro-thrombotic state– are 
profoundly involved in the pathogenesis of CVD [11]. Therefore, viewing depression in the context 
of chronic systemic stress may aid in the comprehension of its association with CVD.

Because depressive symptoms may be present in a wide array of psychiatric disorders, such as 
bipolar disorder, dysthymia, and Major Depressive Disorder (MDD); all of which may be explained 
by differing etiopathogenic hypotheses, this review will focus on the study of the latter. The 
objective of this review is to describe the physiologic implications of MDD conceived as a chronic, 
dysregulated stress response, and their overlap with the pathophysiology of CVD.

Major Depressive Disorder: An Overview
Currently, MDD is considered one of the leading causes of disability worldwide, accounting 

for approximately 63,200,000 Disability-Adjusted Life Years (DALY), which represents 24.5% of all 
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Abstract

Depression is one of the most frequent mental disorders in clinical practice, which has been closely associated 
with impaired daily functioning and quality of life, and increased morbidity and mortality. Although depression has 
been related to a wide spectrum of medical conditions, the link with Cardiovascular Disease (CVD) appears to 
be particularly robust in regards to epidemiology and pathophysiology. Indeed, depression and CVD may share 
a common mechanistic continuum via the molecular phenomena featured in a chronic stress response. In this 
regard, chronic inflammation, insulin resistance and dysregulation of thrombogenesis may be instrumental in the 
neurobiological “slippery slope” from chronic stress to depression, and further, to cardiometabolic disease. This 
article summarizes current knowledge on the pathophysiologic relationship between chronic systemic stress, 
depression and CVD, highlighting potential novel therapeutic targets.
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DALY, lost to mental disorders, and 2.5% of DALY lost to all diseases 
[12]. In addition, MDD is a major risk factor for suicide, which may 
occur in up to 13% of these patients, or an estimate of 1 million deaths 
every year [13]. Furthermore, all-cause mortality has been observed 
to be considerably higher in subjects with MDD [14]. Thus, part of 
the burden attributed to MDD stems from its association with various 
other mental and physical diseases [15]. 

Clinically, MDD may feature core affective symptoms, such 
as depressed mood and anhedonia, as well as cognitive symptoms 
–thoughts of worthlessness or guilt, thoughts of death or suicide, 
impaired concentration–, psychomotor symptoms, such as loss of 
energy and fatigue, and psychomotor retardation or agitation, and 
vegetative symptoms, such as changes in weight or appetite and 
insomnia or hypersomnia [16]. The latter are particularly relevant for 
the definition and differentiation of two classic phenotypes of MDD: 
Melancholic vs atypical depression. Whereas melancholic depression 
is characterized by weight or appetite loss and insomnia with early 
morning waking, atypical depression features “inverse vegetative 
symptoms”, with increased weight or appetite and hypersomnia. In 
addition, atypical depression includes mood reactivity and rejection 
sensitivity, in opposition to a subjective sense of detachment and 
pervasive anhedonia in melancholic depression (Figure 1) [17].

Although each of these forms of depression may correspond 
to particular neurobiological phenomena –discussed in a further 
section of this article–, views on the pathophysiology of this disorder 
are currently dominated by the monoamine hypothesis, wherein 
decreased signaling of serotonin (5HT), Norepinephrine (NE) and 
Dopamine (DA) in the Central Nervous System (CNS) may account 
for distinct manifestations of depression [18] (Figure 2). Dysregulation 
of 5HT signaling in the frontal cortex and basal nuclei is related to 
symptoms such as anxiety, tearfulness and obsessive-compulsive 
behaviors, whereas lower NE levels are related to alterations in 
attention, concentration and other cognitive functions, and disrupted 
DA signaling corresponds to symptoms such as anhedonia and 
blunted affect [19]. Although these hypotheses constitute the basis for 
the current pharmacotherapy of depression, the origin of this “end 
state” of monoamine signaling dysfunction remains unelucidated 
and a subject of intense research.

Indeed, the pathogenesis of depression may involve components 
as diverse as gene mutations, neurotransmitter availability, receptor 
sensitivity and regulation, and vascular lesions in specific areas of the 
brain, as well as immune and endocrine dysregulation [20]. Genetic 

variations associated with various brain metabolic pathways may be 
relevant, including polymorphisms of the monoamine oxidase gene 
A [21], group-2 metabotropic glutamate receptor gene (GRM3) [22] 
and the glucocorticoid receptor gene NR3C1 [23]. Neurotrophin 
dysfunction in the amygdala, hippocampus, cingulate cortex and 
medial prefrontal cortex has been associated to MDD [24], in 
conjunction with impairments in synaptic plasticity and neurogenesis 
[25]. In particular, these alterations have been closely linked with 
dysregulation of the Hypothalamic-Pituitary-Adrenal Axis (HPAA) 
and chronic neuroinflammation [26].

Sustained activity of proinflammatory mediators such as Tumor 
Necrosis Factor-α (TNF-α) and inteleukin-6 (IL-6) in the CNS 
has been linked to alterations in neural structure and function 
secondary to oxidative stress [27] and mitochondrial dysfunction, 
with significant behavioral correlates in depression [28]. These events 
may be propitiated, precipitated and perpetuated by both acute and 
chronic stressors, highlighting the importance of the physiology of 
the stress response in the understanding of depression.

The Stress Response: An Illustrious Example of Mind-
Body Interaction

In order to preserve life, all living beings require maintenance 
of homeostasis, a dynamically stable milieu in the face of changing 
environments. Therefore, each being disposes of a variable array of 
coping mechanisms, which constitute a stress response. These are 
deployed upon the presence of actual or perceived threats, termed 
stressors [29]. In humans, the stress response comprises a complex 
group of mechanisms, both psychological –with cognitive, behavioral 
and affective aspects– and somatic, involving all organ systems [30]. 
In ensemble, these mechanisms tend to promote survival in a classical 
acute fight-or-flight situation, with physiological changes that 
optimize nutrient and blood delivery to the brain, the skeletal muscles 
and distressed body sites, and an inhibition of functions which may 
be disadvantageous or non-urgent, such as feeding, sleeping, and 
sexual and reproductive activity [31]. Nonetheless, when prolonged, 
the stress response may become maladaptive, as it has been proposed 
to occur in MDD [10].

The stress response is activated by two synergic neurobiological 
systems, one dominated by Corticotrophin-Releasing Hormone 
(CRH) signaling, and one dominated by Norepinephrine (NE) 

Figure 1: Core differences between melancholic and atypical depression: 
Whereas melancholic depression features weight loss, early morning 
waking, and severe anhedonia or detachment; atypical depression features 
weight gain, hipersomnia and mood reactivity.

Figure 2: The Monoamine Hypothesis: Decreased signaling by specific 
neurotransmitters results in disinct psychopathologic manifestations.         
NE: Norepinephrine, 5HT: Serotonin, DA: Dopamine.
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signaling (Figure 3). The CRH system consists of amygdalar, 
hypothalamic and peripheral components. The former mediates the 
activation of fear conditioning and anxious behavior: In mice, deletion 
of glucocorticoid receptors in the central nucleus of the amygdala has 
been documented to prevent these behaviors [32]. Moreover, the 
hypothalamic component of the CRH system consists of a humoral 
pathway –which induces Adrenocorticotropin-Releasing Hormone 
(ACTH) in the pituitary, thus activating the Hypothalamus-Pituitary-
Adrenal Axis (HPAA)–; and descending, activating projections to the 
Locus Coeruleus (LC) [33]. Finally, the peripheral component of the 
CRH system includes CRH-releasing sympathetic nerve terminals. 
Peripherally, CRH acts as a paracrine mediator of inflammation, and 
as an autocrine immunomodulator in some immune cells [34].

On the other hand, the NE system is constituted by multiple 
projections from the LC to the amygdala and hypothalamus, 
reciprocally activating the CRH system [35]. Along with the effects of 
HPAA activation, the descending sympathetic fibers stemming from 
the LC are largely responsible for the systemic somatic characteristics 
of the stress response. Notably, these include increased cardiac 
output, a redistribution of blood flow towards key sites for survival 
and away from splanchnic circulation, promotion of gluconeogenesis, 
and activation of the innate immune system [36]. Furthermore, 
exposure to stressors triggers the synthesis and secretion of acute-
phase proteins in the liver, including Serum Amyloid A, C - reactive 
protein, haptoglobin and fibrinogen, all of which favor a systemic 
pro-inflammatory, pro-thrombotic state [37]. The persistence of 
this state may be a major contributor to the development of CVD 
in the context of chronic stress and MDD [38]. Likewise, aspects 
of gluconeogenesis, such as increased release of free fatty acids and 
promotion of IR, may be particularly important in the association 
between chronic stress, MDD and CVD [39].

The cognitive and behavioral aspects of the stress response are the 
result of interactions between the amygdala, the LC, the Prefrontal 
Cortex (PFC), the hippocampus, and the Nucleus Accumbens (NA). 
The PFC is responsible for complex functions, including integration 
of various sensory modalities, attention, memory, and judgment, 

among others [40]. The medial PFC is able to restrain activation of 
the amygdalar system, as well as the HPAA though direct projections 
to the hypothalamus. In turn, the PFC may be inhibited by NE 
projections from the LC. Therefore, the interactions between the 
PFC, the LC and the amygdala dictate the predominance of the 
superior functions of the PFC or the more survival-oriented behaviors 
mediated by subcortical structures at any given point [41].

The hippocampus participates in the initiation of the stress 
response by intervening in the encoding and storing of adverse 
memories, which may resurface upon exposure to other stressors in 
a reflexive and unconscious fashion [42]. Because the hippocampus 
can also regulate activation of the amygdala and the HPAA, the 
emergence of these data in the hippocampus may trigger a stress 
response [43]. Lastly, the NA participates in the stress response 
by keeping a consistent, tonic activation of dopaminergic reward 
systems, promoted by basolateral amygdalar neural projections [44]. 
This activity contributes to the stress response by favoring motivation 
and attention [45].

From chronic stress to depression: A neurobiological 
slippery slope

Although these neurobiologic mechanisms are a valuable resource 
for coping with acute stressors, they appear to be comparatively 
inefficient regarding chronic stress, with both structural and 
functional neural alterations resulting in maladaptive responses [29]. 
Indeed, these pathways provide a framework for the understanding 
of MDD as a chronic disruption of the stress response. This model 
may be applied more readily to the classic model of melancholic 
depression: Elevated NE levels in the Cerebrospinal Fluid (CSF) and 
hypercortisolism, appear to be more frequent in subjects with this 
diagnosis, indicating sustained activation of the amygdala-LC and 
PFC-HPAA systems [46].

On the other hand, atypical depression has been associated with 
exaggerated negative feedback regulation of the HPAA, which has also 
been observed to occur in chronic fatigue [47]. These states have been 
associated with hypermethylation of the NR3C1 gene, which results 
in increased expression of Glucocorticoid Receptors (GR), enhancing 
negative feedback of the HPAA, and favoring hypocortisolism [48]. 
Similar findings of altered GR function have been described in 
other fatigue and pain disorders [49]. This hypothesis harmonizes 
with the relatively strong hereditary pattern of atypical depression, 
which has shown higher concordance in monozygotic twins than the 
melancholic variant [50]. In addition, atypical depression is more often 
associated with inflammation and metabolic abnormalities, including 
elevated levels of C-Reactive Protein (CRP), IL-6 and TNF-α, as well 
as overweight, obesity and dyslipidemia [51]. Thus, proinflammatory 
cytokines released by adipose tissue may be particularly important in 
the pathogenesis of atypical depression [52], possibly by modifying 
expression of GR and other mediators within the HPAA [53].

In contrast, the distinct neurobiological features of dysthymia –
termed Persistent Depressive Disorder in the DSM-5 [16] – remain 
relatively unknown. This disorder describes cases of continuous 
and prolonged depressive mood, and is generally assumed to be 
on a shared neurobiological spectrum with MDD, differing only in 
severity and duration [54]. Epidemiological data appears to support 
this assumption, as an estimate of 75% of patients with PDD meet the 

Figure 3: The Stress Response. CRH: Corticotropin-Releasing Hormone, 
ACTH: Adrenocorticotropin Releasing Hormone, NE: Norepinephrine. 
The stress response and its somatic characteristics are a result of the 
activation of the descending sympathetic fibers from the LC, which 
is reciprocally activated by the CRH system. Cortisol is released via 
stimulation by ACTH on the adrenal glands after the HPAA is activated by 
the Hypothalamus.
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criteria for a major depressive episode at least once over their lifetime 
[55], and the risk for relapse into a subsequent episode has been 
estimated at 71.4% in these subjects, most commonly within three 
years [56]. Nevertheless, certain differences have been determined: 
Patients with PDD show reduced activation of the dorsolateral PFC, 
with increased activation of the amygdala, anterior cingulate cortex 
and insula [57].

Although scarce to date, these distinct neurobiological findings 
across different types of depression underline the limitations of 
current diagnostic classifications for mental disorders, which 
although valuable for practical assessment, may be unable to reflect the 
neurobiological and clinical nuances of various types of depression. 
Indeed, depression should be understood as a clinical syndrome with 
multiple possible etiologies [58], and further research is essential for 
this characterization and the optimization of therapeutic alternatives.

Chronic Stress, Depression and Cardiovascular 
Disease: A Pathophysiologic Continuum?

Many putative biological mechanisms have been proposed to 
underlie the relationship between depression and CVD, including 
chronic low-grade inflammation, IR, and dysregulation of 
thrombogenesis [7]. Interestingly, these phenomena are hallmarks of 
stress responses, which allow the framing of chronic stress, depression 
and CVD within a single unique pathophysiologic continuum. These 
mechanisms are further discussed in the following paragraphs.

Chronic inflammation

Depression has been notoriously related with significant changes 
in immune function, most prominently regarding circulating levels 
of proinflammatory cytokines. Indeed, Happakoski et al. [59] and 
Dowlati et al. [60] among others have ascertained higher levels of 
TNF-α, IL-6 and other cytokines in subjects with depression in 
broad meta-analyses. Similarly, in a large sample of 73,131 adults, 
Wium-Andersen et al. [61] found greater levels of circulating CRP –a 
pivotal mediator in the acute-phase response [62]–to predict risk for 
hospitalization with depression.

The role of inflammation in the pathogenesis of MDD has been 
encapsulated in the pathogen-host defense hypothesis, which profiles 
depression as a form of the classical sickness behavior observed in 
a wide range of species. Thus, from an evolutionary perspective, 
depression would encompass the behavioral manifestations of a 
systemic response to psychosocial stress, in contrast to virulent 
microorganisms in a classical pathogen-host disease model [11]. 
Indeed, patients with MDD exhibit numerous key features of systemic 
inflammatory responses, such as upregulation of various cytokines 
and chemokines and their receptors, and elevated levels of acute-
phase reactants, and cellular adhesion proteins, in both peripheral 
blood and Cerebrospinal Fluid (CSF) [63].

Inflammatory signals may be relayed to the brain via three chief 
mechanisms: (A) A humoral pathway, wherein proinflammatory 
cytokines are able to cross certain regions of the Blood-Brain Barrier 
(BBB), in particular, circumventricular areas. (B) A neural pathway, 
where cytokine signaling in afferent neural endings, such as in the 
vagus nerve, promotes monoaminergic metabolism disruption in the 
central nervous system. (C) A cellular pathway, where circulating 
TNF-α synthesis of CC-chemokine ligand 2 in microglial cells, 

activating chemotaxis of monocytes in the brain. Post-mortem 
evaluation of suicide victims has revealed increased perivascular 
macrophages in the brain, with enhanced expression of Allograft 
Inflammatory Factor 1 (AIF1) and CCL2, which are associated with 
macrophage activation and cellular transport [64].

In addition, IFN-γ signaling promotes expression of indoleamine 
(2,3)-dioxygenase, which catalyzes conversion of tryptophan –the 
precursor amino acid of 5HT– to kyneurenine, which may then be 
converted to Quinolinic Acid (QA) [65]. The latter is a neurotoxic 
metabolite which can activate microglia and promote monocyte 
and macrophage infiltration to the brain. QA can also directly 
activate glutamate receptors and inhibit glutamate reuptake by 
astrocytes. The resulting hyperactivation of NMDA receptors may 
result in excitotoxicity and decreased production of Brain-Derived 
Neurotrophic Factor (BNDF), a key target for antidepressant activity. 
High levels of QA have been found in the anterior cingulate cortex of 
suicide victims [66].

Furthermore, proinflammatory cytokines reduce synaptic 
availability of monoamine neurotransmitters through a myriad 
of mechanisms, possibly representing a fundamental link in the 
pathogenesis of MDD. Induction of Mitogen-Activated Protein 
Kinase (MAPK) expression by IL-1β and TNF-α has been associated 
with augmented expression and function of 5HT reuptake 
transporters and decreased 5HT availability. Likewise, inflammation-
related generation of reactive oxygen species and cytokine signaling 
is associated with diminished tetrahydrobiopterin (BH4) availability, 
an enzymatic cofactor essential for synthesis of all monoamines [63]. 
Similarly, high levels of proinflammatory cytokines and C - reactive 
protein have been linked to hypoactivation of the basal nuclei, in 
particular the ventral striatum and substantia nigra, in association 
with decreased responses to rewards and augmented susceptibility to 
negative reinforcement [66,67]. In addition, increased inflammatory 
signaling has been linked to hyperactivity of fear-related neurocircuits, 
especially in the anterior cingulate cortex, insula and amygdala [68].

In parallel to these pathways from systemic inflammation to 
depression, psychosocial or physiologic stress may also trigger 
inflammation, possibly constructing a positive feedback loop. 
Psychophysiological stress has been observed to induce expression 
of endogenous Damage-Associated Molecular Patterns (DAMP) 
and NLRP3-containing inflammasomes, which are responsive 
to DAMP. Likewise, upon stress, non-pathogenic commensal 
bacteria found in the gut may enter the peripheral bloodstream, 
whose Microbial-Associated Molecular Patterns (MAMP) may also 
activate inflammasomes [63]. This activation triggers glucocorticoid 
resistance in inflammatory cells, possibly potentiating their activity 
in the brain, contributing to the pathogenesis of MDD. Increased 
expression of NLRP3, as well as caspase 1 in blood mononuclear cells, 
has been related to increase circulating levels of IL-1β and IL-18, in 
correlation with depression severity [67].

Insulin resistance

Several studies have demonstrated the link between IR and 
depression [69,70]. In a longitudinal study that included 2316 
adult women, Everson-Rose et al. [71] found depressed subjects to 
have greater IR prevalence, as well as higher risk of type 2 Diabetes 
Mellitus (DM2). Similarly, levels of IR have been described to vary 
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proportionally to the severity of depression [72], a relationship 
which may be mediated, at least partially, by adiposity and waist 
circumference [73].

Many neuroendocrine phenomena predispose to the development 
of IR in depression: Notoriously, HPAA activation results in elevated 
cortisol levels, which increases hepatic gluconeogenesis, inhibits 
pancreatic insulin secretion, and facilitates ectopic fat deposition in 
the liver and skeletal muscle, which ultimately renders these tissues 
less sensitive to insulin signaling. In parallel, hypercortisolemia 
appears to promote adipogenesis while simultaneously favoring 
lipolysis, resulting in increased and sustained release of free fatty acids, 
which in turn may powerfully promote IR in the liver. In addition, 
enhanced cortisol activity may lead to expansion of intravascular 
volume, contributing to hypertension [74].

On the other hand, prominent pro-inflammatory cytokines in 
depression, such as IL-6 and TNF-α, can hinder insulin signaling 
by triggering phosphorylation of the serine/threonine residues on 
the Insulin Receptor Substrate (IRS-1) [75]. IL-1β activity has also 
been linked with decreased IRS-1 expression [76]. In ensemble, these 
alterations lead to decreased glucose uptake in the classic insulin 
dependent tissues –chiefly, the liver and skeletal muscle– which in 
turn favors glucose availability for non-insulin dependent tissues, 
such as the brain and immune cells. In this scenario, IR has been 
conceived as a key component in the physiological response to a 
myriad of stressors, by differentially promoting glucose delivery to 
essential sites [10]. Nevertheless, chronic IR, as found in depression, 
has been associated with multiple pathophysiologic phenomena, 
such as atherosclerosis, endothelial dysfunction and left ventricular 
hypertrophy, all of which predispose to CVD [75].

Dysregulation of thrombogenesis

Depression has been linked to alterations in endothelial function 
in healthy subjects and those with established CVD [77], with relevant 
clinical correlates: Paranthaman et al. [78] have described significant 
changes in vascular function in depressed individuals, including 
greater carotid intima media thickness and pulse wave velocity, as 
well as blunted responses to acetylcholine in preconstricted small 
arteries. Similarly, Williams et al. [79], found patients hospitalized 
for acute coronary syndrome and moderate depression to have 
higher levels of circulating TNF-α, IL-6 and C - reactive protein, as 
well as enhanced ADP-induced platelet aggregation. Most strikingly, 
depression has been associated with worse prognosis and greater 
recurrence of cardiovascular events [80].

Several pathogenic mechanisms have been proposed to explain the 
aforementioned findings. Dysfunctional polymorphisms of the Brain-
Derived Neurotrophic Factor (BDNF) gene, which have been linked 
with increased susceptibility to depressive and anxious disorders, 
appear to co-occur with a myriad of prothrombotic phenomena [81]. 
Notably, in rats, Amadio et al. [82] have described the dysfunctional 
BDNF Met/Met polymorphism to be associated with lower size, 
volume and quantity of platelets and reticulocytes, higher levels of 
α1-antitrypsin, and IL-6, as well as worse erythrocyte sedimentation 
rates and greater leukocyte recounts, especially monocytes and 
neutrophils, reflecting a proinflammatory and prothrombotic state. 
In this study, these alterations resulted in shorter mean time to total 
occlusion in induced carotid artery thrombogenesis models.

Subjects with depression have also been described to show 
elevated levels of β-thromboglobulin and platelet factors, as well as 
increased expression of P-Selectin and glycoprotein IIb/IIIa [83]. 
Likewise, hyperactivation of the HPAA with hypercortisolemia has 
been linked to down regulation of endothelial nitric oxide synthase 
[84], while peripheral CRH signaling may upregulate expression of 
macrophage-1 antigen and release of endothelin from monocytes. 
These disruptions result in diminished endothelial nitric oxide 
synthesis, leading to endothelial dysfunction and contributing to 
increased cardiovascular risk [85]

Conclusion
As has been revealed by recent research, the neurobiology of 

chronic stress and depression appear to be on a pathophysiologic 
continuum with cardiometabolic disease, with severe repercussions 
in individual productivity and quality of life. Nevertheless, further in-
depth study is required in order to ascertain the relative importance 
of different components in this pathophysiologic framework, in 
regards to impact in overall well-being and potential to serve as 
novel therapeutic targets. In particular, chronic inflammation and 
IR appear to be attractive targets, acting as powerful links in the 
relationship between mental and somatic ailment. In this context, 
recent state-of-the-art studies have assessed alternatives such as 
monoclonal antibodies [86], non-steroidal anti-inflammatory drugs 
[87] and metformin [88]. Indeed, the field of depression therapeutics 
appears promising, in light of the increased scientific and social 
interest experienced in this area in recent decades.
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