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Introduction
Traditional medicine or complementary and alternative medicine (CAM) are implicated in a 

variety of therapies utilizing indigenous substances to provide health care. Traditional medicine 
practitioners utilize knowledge and skills that have been used for thousands of years to treat various 
ailments [1]. These practices vary with geographic distribution and availability of indigenous 
substances in that region. Traditional medicines become increasingly popular worldwide with 
the understanding of scientific basis and underlying mechanisms of action. In the modern world, 
traditional medicine is an integral part of the human healthcare system. Several of the conventionally 
used pharmacological drugs are derived from traditional medicine [1].

While some are yet to be explored, numerous traditional medicines are under investigation 
to understand their mechanism of action and for therapeutic utilization. Use of plant latex from 
several medicinal plants to stop bleeding from minor injuries and to enhance wound healing has 
been in practice for thousands of years by tribal/rural people of India and other countries [2-5]. 
These attributes of plant latex have been scientifically investigated for several years. The components 
of plant latices responsible for these activities have been identified and their biological mechanism 
of action has been documented. Proteolytically regulated blood coagulation and fibrinolysis are the 
important events associated with the arrest of bleeding and wound healing process, respectively 
[6-8]. Plant latices are rich in proteolytic enzymes and are found to have selective actions on blood 
coagulation factors and the fibrinolytic system. In this review, we have described advancement made 
in understanding the role of plant latex proteases (PLPs) on hemostasis, and the mechanisms of 
action of these proteases on blood coagulation and fibrinolytic pathways.

Plant Latex
Plant latex is a viscous fluid exudate produced by the laticiferous tissue found in plants belonging 

to families; Apocyanaceae, Asclepiadaceae, Caricaceae, Euphorbiaceae, Moraceae etc. [9,10]. More 
than 35,000 plant species are known to produce latex [1,2]. Plant latex plays important role in plant 
physiology and the plant self-defense, and is comprised of both inorganic and organic components 
[11-13]. Importantly, plant latex contains secondary metabolites, proteins and hydrolytic enzymes 
which have several medicinal values [10,14].

Medicinal Importance of Plant Latex 
Among numerous traditional medicines of the plant origin, latices of medicinally important 

plants are being used to treat various ailments. Most commonly, plant latices are utilized as 
anthelmintic, analgesic, antinociceptive, to clear skin infections, arrest bleeding from minor injuries 
and to enhance wound healing [15-17]. In addition, it is known that plant latices have been used 
in the management of toothache, gum bleeding as well as inducing abortion [3,18,19]. Studies 
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like activity and directly induce fibrinogen clotting. Plant latex serine proteases including Latex Glycoprotein 
(LGP) from the latex of Synadenium grantii also exhibit procoagulant properties. However, their mechanism of 
action is not understood. In addition to clot-inducing activity, both the cysteine and serine proteases dissolve 
blood clot (plasmin-like activity). These properties of plant latex proteases have to be further investigated for their 
possible utilization in treatment of hemostatic disorders and other clinical applications.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Citation: Venkatesha SH, Rajaiah R and Vishwanath BS. Hemostatic Interference of Plant Latex Proteases. 
SM J Clin Pathol. 2016; 1(1): 1002.

Page 2/7

Gr   upSM Copyright  Vishwanath BS

with animal models further elaborated the scope of plant latices 
as therapeutic agents. For example, plant latices have been shown 
to prevent ethanol- and aspirin-induced gastric hyperacidity and 
ulceration in rats [20], suppress autoimmune arthritis by modulating 
immune mediators in experimental animal models [21,22], anti-
hyperglycemic adrenal protective activities, affords protection against 
complications associated with diabetes in rats [23] and prevents 
hepatocarcinogenesis in a transgenic mouse model of hepatocellular 
carcinoma [24]. Interestingly, proteases present in plant latices are 
involved in several of these observed pharmacological activities 
[2,10,25]. 

Plant Latex Proteases (PLPs)
Proteolytic activity in the latex of papaya (Carica papaya) was 

known in the early 1900s [26]. Recent literature survey indicates that 
latices from hundreds of plants belonging to various families contain 
at least one proteolytic enzyme [10,27]. More than hundred proteases 
from plant latices have been isolated and characterized. PLPs are 
shown to hydrolyze wide variety of protein-substrates including 
casein, azocasein, gelatin, collagen, fibrinogen, fibrin and several 
synthetic substrates [2,28,29]. However, specificities or selectivity 
for their physiological substrates are not clearly known. There is a 
striking uniqueness in the protease-type present in plant latices. 
Unlike mammalian system which contain all the four major classes of 
proteases (serine-, metallo-, cysteine- and aspartate-proteases) [30-
33], plant latices contain proteases that belong to either cysteine-or 
serine-protease class [10,25]. For example, all of the four proteases 

isolated from Carica papaya and Ficus carica latex belong to cysteine-
protease class [13,34]. Similarly, all of the three proteases isolated 
in Euphorbia milii latex belong to serine-protease class [35,36]. An 
unusual aspartate-protease isolated from the latex of Ficus racemosa 
and cotinifolin, a metallo protease isolated from Euphorbia cotinifolia 
are two exceptions [37,38]. Furthermore, all the proteases isolated 
from plant latices are monomers except indicain, a serine protease 
isolated from latex of Morus indica is a dimeric protein [39].

PLPs on Hemostasis
Hemostasis involves a proteolytically regulated system that 

requires activation of platelets and blood coagulation cascade. 
Activated platelets create a thrombogenic environment and amplify 
the coagulation process [40,41]. The coagulation process initiates 
with the activation of a series of serine proteases which results in the 
activation of thrombin. Activated thrombin acts on soluble plasma 
fibrinogen and converts it into an insoluble fibrin network [30,42]. 
Finally, circulating cells including platelets entrap and enmeshed in 
the network of fibrin to form a hemostatic plug [40,43]. Fibrinolysis 
is a process that operates in the opposite of coagulation wherein the 
formed hemostatic plug is hydrolyzed (Figure 1).The fibrinolytic 
system comprises of an inactive zymogen form of plasmin, 
plasminogen. Plasminogen activators, the tissue type plasminogen 
activator and the urokinase type plasminogen activator, mediate 
the activation of plasminogen [44]. Thrombin and plasmin are the 
ultimate enzymes of blood coagulation and fibrinolysis cascades, 
respectively.

Figure 1: Sites of action of isolated plant latex proteases on blood coagulation cascade and fibrinolysis. 
Activation of the intrinsic and the extrinsic pathways of coagulation results in stepwise activation of coagulation factors and results in the generation of thrombin. 
Thrombin hydrolyses soluble fibrinogen at specific sites releasing fibrinopeptides A and B, and converts into insoluble fibrin. Activation of factor XIII by thrombin 
cross-links the fibrin assembly to make a meshwork of stable fibrin. Activated fibrinolytic system activates plasmin that degrade fibrin clot. ‘*’ represents examples 
of plant latex proteases with specific actions on these pathways.
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For centuries, latices of several medicinal plants have been used 
extensively by tribal and rural people of India to arrest bleeding 
from minor injuries and to enhance wound healing [3]. Blood 
coagulation and fibrinolysis are the key events associated with the 
arrest of bleeding and wound healing, respectively. However, there 
was no scientific study conducted on the involvement of plant latex 
on these events until 1930s. In 1937, Eagle, et al. reported for the 
first time the procoagulant (fibrinogen-clotting) activity of papain, a 
cysteine protease isolated from C. papaya [45]. They compared the 
procoagulant property of papain with trypsin, a digestive enzyme. 
They found that trypsin was able to coagulate blood indirectly by 
activating prothrombin to thrombin, whereas, papain did not activate 
prothorombin, instead act directly on fibrinogen to form fibrin. 
Although the anticoagulant activity of latices from ficus species was 
reported, there is no further evidence to substantiate this finding 
[46,47]. The field did not get much attention till Ritcher, et al. (2002) 
reported the activation and inactivation of coagulation factor-X by 
ficin [48]. Where, ficin reduced the activated partial thromboplastin 
time and the prothrombin time of normal plasma but not of plasma 
deficient in factor-X. Furthermore, ficin converted Factor-X (FX) 

to activated Factor-X (FXa) by consecutive proteolytic cleavage. 
It specifically cleaves the heavy chain of factor-X between Leu178 
and Asp179, Arg187 and Gly188, and Arg194 and Ile195 to release 
carboxy-terminal peptide. After this report, Rajesh, et al. (2005) 
showed the procoagulant activity of C. gigantea latex extract associated 
with fibrinogenolytic activity mediated by cysteine proteases [2]. 
They found that C. gigantea latex cysteine proteases induce clotting 
of platelet poor plasma as well as dissolve fibrin of the formed clot. 
Furthermore, they analyzed the cleavage pattern of purified human 
fibrinogen, and fibrin by C. gigantea latex proteases. There was 
selectivity in the order of hydrolysis of fibrinogen and fibrin subunits. 
This selective hydrolysis of fibrinogen and fibrin subunits could be the 
reason for clot-inducing and clot-dissolving activities of C. gigantea 
latex cysteine proteases. Recent literature survey indicated that there 
are several latex extracts and over 10 purified proteases (including 
both cysteine- and serine-proteases) from different plant latices have 
been reported for their involvement in blood coagulation/fibrinolysis 
(Table 1).

Both the cysteine and serine proteases from plant latices exhibit 

Table 1: List of plant latex proteases (A) and crude latex extracts (B) with proteolytic activity that are shown to interfere with hemostasis and their target coagulation 
factors and action. ND: not determined.

Proteases Type Action Target References

Eumiilin
(E. milii) Cysteine ND Fibrinogen [35]

Ficin
(F. carica) Cysteine Factor X activator Factor X [48]

LPPII and LPPIII
(C. procera) Cysteine Thrombin- and

plasmin-like Fibrinogen and Fibrin [77]

Papain
(C. papaya) Cysteine Thrombin-like and factor XIIIa-like activity Fibrinogen [45,56]

Pergularain e I
(P. extensa) Cysteine Thrombin- and

plasmin-like Fibrinogen and Fibrin [49]

AMP48
(A. heterophyllus) Serine Fibrino(geno)lytic Fibrinogen and Fibrin [58]

Crinumin
(C. asiaticum) Serine Plasmin-like and  platelet aggregation inhibition Fibrin [78]

Hirtin
(E. hirta) Serine Thrombin- and

plasmin-like Fibrinogen and Fibrin [51]

LGP
(S. grantii) Serine Procoagulant Fibrinogen and Fibrin [50]

A

Latex extract Type Action Target References

Asclepias curassavica Cysteine Thrombin- and
plasmin-like Fibrinogen and Fibrin [25,79]

Calatropis gigantea Cysteine Thrombin- and
plasmin-like Fibrinogen and Fibrin [2,25,80]

Calatropis grandiflora Cysteine Thrombin- and
plasmin-like Fibrinogen and  Fibrin [81]

Calatropis puciflorum Cysteine Thrombin- and
plasmin-like Fibrinogen and Fibrin [25]

Euphorbia nivulia Cysteine Procoagulant ND [82]

Plumeria rubra Cysteine Thrombin- and
plasmin-like Fibrinogen and  Fibrin [81]

Synadenium grantii Serine Procoagulant Fibrinogen and Fibrin [80,82]

Wrightia tinctoria Serine Procoagulant Fibrinogen and Fibrin [80]

Pedilanthus tithymaloides ND Procoagulant ND [82]

Ficus domestica ND Anticoagulant ND [46]

Ficus glabrata ND Anticoagulant ND [47]

B
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procoagulant action. There are only two reports on anticoagulant 
activities of plant latex [46,47]. However, it is not clear whether the 
anticoagulant activity is due to the proteases or other constituents 
present in the plant latex. Cysteine proteases of plant latices are 
shown to exhibit selectivity towards coagulation factors and induce 
specific actions [48,49]. Whereas, plant latex serine proteases appear 
to be non-specific and their mechanisms of procoagulant action 
is yet to be understood. For instance, latex glycoprotein (LGP), 
a serine protease isolated from S. grantii latex neither forms fibrin 
from fibrinogen nor induces clot formation in congenital factor 
X-deficient plasma [50]. Likewise, hirtin, a serine protease isolated 
from E. hirita, is shown to hydrolyze synthetic substrates specific for 
thrombin but is not observed for direct fibrinogen-clotting activity 
[51]. These studies clearly suggest that LGP and hirtin lack thrombin-
like activity. Similarly, there are few other serine proteases isolated 
from plant latices that act as procoagulants, but their mechanism of 
action is not understood. Overall, these serine proteases are shown 
to hydrolyze fibrinogen, they lack direct fibrinogen-clotting activity 
(thrombin-like activity), which is observed for plant latex cysteine 
proteases [49,50]. These observations indicate that plant latex cysteine 
proteases and serine proteases are different with respect to their 
procoagulant mechanisms and interference with blood coagulation 
cascade. The site of action of some of the plant latex proteases on 
blood coagulation cascade is summarized in Figure 1.

Thrombin-like activity of plant latex proteases

Thrombin-like enzymes are a class of proteases that have the 
capacity to induce fibrin clots and resembles at least in part to that of 
thrombin hydrolysis of fibrinogen [52-54]. They specifically hydrolyze 
the Aα and/or Bβ chains of fibrinogen and release fibrinopeptide 
A and/or fibrinopeptide B, respectively leading to the formation of 
fibrin clot [52,55]. Although fibrinogen-clotting activity of papain was 
reported by Eagle, et al. for the first time in 1937, they did not show 
whether papain cleaves fibrinogen similar to the thrombin, releases 
fibrinopeptides A and B, and induces fibrin formation. However, the 
study suggests that papain might have thrombin-like activity. We 
isolated for the first time a thrombin-like enzyme pergularain e I, 
a cysteine protease from Pergularia extensa plant latex and studied 
the mechanism of its action on fibrinogen molecule. Pergularain e 
I preferentially cleaves Aα and Bβ chains of fibrinogen and releases 
fibrinopeptides. The release of these fibrinopeptides is predicted to 
be due to arginine specific hydrolysis of fibrinogen by pergularain e 
I. Interestingly, the molecular masses of the two peptide fragments 
released from fibrinogen by pergularain e I were in close agreement 
with the molecular masses of 16 amino acid sequence of fibrinopeptide 
A, and 14 amino acid sequence of fibrinopeptide B released by the 
action of thrombin [49]. More recently, Russell Doolittle, examined 
detailed mechanism of thrombin-like activity of papain [56]. Wherein, 
papain cleaves the Aα and Bβ chains of fibrinogen molecule at specific 
sites releasing fibrinopeptides similar to thrombin and induce fibrin 
formation by the polymerization of activated fibrinogen monomers. 
Additionally, it is shown that papain has factor XIIIa-like activity and 
catalyzes cross-links between adjacent fibrin monomers similar to 
factor XIIIa. Intermolecular cross-linking of fibrinogen monomers 
by papain leads to γ-chain dimers, trimers, and tetramers, similar 
to thrombin-factor XIIIa-stablilized fibrin. However, papain induce 
covalent cross-linking between chains in neighboring protofibrils in a 
‘head-to-tail’ fashion by transpeptidation occurs between of α-amino 

group of γ-Tyr1 of one γ-chain and γ-gly403 of the other, in contrast 
to ‘tail-to-tail’ transpeptidation that occurs between γ-Lys406 
and γ-Gln398 with factor XIIIa [56]. Other plant latex cysteine 
proteases that exhibited thrombin-like activity appear to have similar 
mechanisms of action on fibrinogen. Thrombin-like enzymes are 
identified and characterized from various sources including snake 
venoms [55]. However, majority of the thrombin-like enzymes 
isolated from other sources lack coagulation factor XIIIa-like activity 
which is observed for papain.

Plasmin-like activity of plant latex proteases

Plasmin is a protease that degrades fibrin into soluble fragments. 
Plasmin is involved in various physiological processes, including 
thrombolysis and wound healing [57]. Plasmin-like enzymes 
are proteases that can hydrolyze insoluble fibrin-clot and mimic 
plasmin in action/function. Apart from blood clot-inducing activity, 
both cysteine and serine proteases of plant latices have blood-clot 
dissolving activities [50,51,58]. Interestingly, most of the plant latex 
proteases that have procoagulant activity also exhibited fibrinolytic 
activity (plasmin-like activity). Plasmin-like activity of plant latex 
proteases is studied with a purified serine protease, LPG isolated 
from S. grantii latex. LGP efficiently hydrolyzed fibrin of plasma-
clot as well as thrombin-induced fibrin from fibrinogen. However, 
the cleavage pattern of fibrinogen and fibrin by LGP is different from 
plasmin hydrolysis. Although LGP hydrolyzes fibrinogen/fibrin, lack 
thrombin-like activity but apparently have procoagulant activity. The 
mechanism of having the dual action of plant latex proteases, clot-
inducing and dissolving properties needs to be explored. A possible 
explanation for this unusual action of plant latex proteases could be 
the selectivity and order of hydrolysis of coagulation factors. However, 
further studies are required to understand these dual actions. This 
unique property is observed only for plant latex proteases and not in 
mammalian or snake venom proteolytic system. Therapeutically, this 
property of plant latex proteases might play a role in stop bleeding by 
inducing clot formation and enhancing the wound healing process by 
dissolving fibrin deposition around the wound. Purified plant latex 
proteases and crude plant latex, which affect blood coagulation and 
fibrinolysis are summarized in Table 1.

Other Pharmacological Activities of PLPs
Other pharmacological activities of PLPs that are scientifically 

evaluated include wound healing, gastric ulcers healing, anthelmintic 
and anti-microbial activities. Fibrinolysis is associated with wound 
healing process which helps in removal of dead tissue around the 
wound, enhancing proliferation of fibroblasts/epithelial cells, and 
supplying nutrients to the healing tissue by inducing angiogenesis 
[59,60]. Wound healing activity of plant latices of C. gigantea, C. 
procera, C. papaya and W. tintoria have been examined using animal 
models [61-63]. It is shown that wound healing activity of plant 
latex is mediated at least in part by fibrinolytic activity of PLPs [63]. 
Studies have also shown the healing properties of PLPs in situations 
of dermatological trauma [64]. In the case of gastric ulcer healing 
activity, PLPs mediated an increase in mucus content which fastens 
intestinal ulcer healing [65]. Furthermore, PLPs are capable of 
detoxifying gliadin and have shown to be suitable for enzyme therapy 
in gluten intolerance such as in coeliac disease [66]. Anthelmintic 
activity of PLPs against gastrointestinal nematodes is demonstrated 
by studies with papaya, pineapple and fig latex [67-69]. However, 
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there is no clear understanding of the mechanisms of actions on 
anthelmintic activity of PLPs. PLPs with antimicrobial activities were 
also identified and reported recently [70]. 

Furthermore, PLPs (bromelain, ficin and papain) are shown 
to regulate cell signaling by phosphorylation of extracellular signal 
regulated kinase (ERK), activation of phosopholipase C (PLC) [60] 
and protease-activated receptors (PAR) [71]. These studies indicate 
that PLP shave the potential role to regulate downstream cellular and 
molecular responses. However, further research has to be carried out 
to understand these actions in detail.

Toxicities of PLPs
Most of the plant latices are toxic in nature and known to induce 

contact dermatitis, eye irritation, keratouveitis, edema and hemorrhage 
[2,72,73]. However, only few of the proteases isolated from plant latex 
are reported to have deleterious effects. Well characterized plant latex 
cysteine proteases including bromelain, papain and ficin are lethal 
to lepidopteron insects and larvae by degrading matrix structural 
proteins on peritrophic membrane and midgut epithelium [13,74]. 
Papain was also able to induce allergic response by activating T helper 
type 2 cells [75,76]. Recently, a cysteine protease (Eumiliin) isolated 
Euphorbia milii shown to induce edema, myonecrisis with leukocyte 
infiltrate and damaged muscle fibers in the footpad of mice following 
intraplantar injection [35]. On the other hand, no toxic effects have 
been observed for serine proteases isolated from plant latices. In 
general, the toxic effects of plant latex are mainly due to substances 
other than proteases present in them. 

Conclusion
Latices of several medicinal plants have been used in the traditional 

medicine to stop bleeding from minor injuries and to enhance wound 
healing. These properties of plant latices are attributed to the action 
of proteases present in them. PLPs have been found to selectively act 
on factors of blood coagulation and fibrinolytic system. These actions 
of PLPs results in inducing/dissolving fibrin clot. It will be interesting 
to study the involvement of PLPs on other components of hemostasis 
such as platelet functions. Detailed understanding of the interference 
of PLPs on hemostasis could be exploited for their usefulness in 
treatment of hemostatic disorders and other clinical applications, and 
also as tools in blood coagulations research/laboratories.
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