
SM Journal of 
Clinical Medicine

Gr   upSM

How to cite this article Wang Z and Huang Z. New Strategies to Overcome Drug 
Resistance in Clinical Therapeutics. SM J Clin Med. 2015; 1(1): 1003.

OPEN ACCESS

ISSN: 2573-3680

Chemotherapy is commonly used in cancer treatment. So far, chemotherapy agents can be 
categorized into three types: classical chemotherapeutic drugs, molecular target agents and cellular 
machineries target drugs [1]. Although the action mechanisms of these three classes of drugs 
are different, these drugs are facing the same challenge of drug resistance. Studies showed that 
mechanisms of drug resistance can be divided into three broad categories: reduced drug uptake; 
Changes in cells that affect the ability of drugs to kill cancer cells (such as alterations in drug 
targets or increased DNA damage repair) and increased energy-dependent efflux [2]. The detailed 
mechanisms of drug resistance have been reviewed elsewhere [2,3], here we will not discuss it further. 
This mini-review focused on the probable solutions to solve drug resistance in clinical therapeutics.

Multi-Drug Resistance (MDR) Modulators
Among those mechanisms as mentioned above, increased energy dependent efflux is the most 

common one to cause drug resistance. Drugs efflux from cancer cells is mediated by ATP-Binding 
Cassette (ABC) transporter. Meanwhile, ABC transporters are broadly expressed in cancer cells 
and strongly implicated in the regulation of drug-resistance [2]. Lots of efforts have been made to 
discover and synthesize modulators of ABC transporters which can reverse MDR in cancer cells 
[4]. P-glycoprotein (pgp) is one of the most thoroughly studied efflux pump. Within the last three 
decades, the inhibitors of pgp have come down through several generations. The first generation 
of pgp inhibitors was composed of some drugs in clinical use such as verapamil, quinidine etc 
[5]. Because those drugs were developed for therapeutic use rather than as inhibitors of MDR 
modulators, the affinity interactions between drugs and pgp were weak. When served as inhibitors 
of pgp, the required concentration of the first generation inhibitors was high and could cause serious 
side effects [6]. Based on the structures of the first generation pgp inhibitors, researchers have 
made some dimerization or modification to develop the second generation inhibitors. The second 
generation inhibitors of pgp are proved to be more selective and have a better pharmacological 
profile. To date, many inhibitors such as PSC833 have come into clinical trials, but they also possess 
moderate toxicity which limits their use [5,7]. Owning to the imperfection of the second generation 
inhibitors, it is necessary to develop a third generation. Prakash et al took advantage of computer 
aided drug design and found XR9576 as a potent and specific inhibitor of pgp. Both their laboratory 
experiments and phase clinical trials provided promising results [6]. It means that researchers could 
use Structure-Activity Relationships (QSAR) and combinatorial chemistry to design more potent 
inhibitors [5]. 

SiRNA-based therapies
It has been reported that 1481 genes were associated with drug resistance, and among them, 

67 genes contributed to multi-drug resistance [8]. RNA interference (RNAi) plays a key role in 
analyzing the gene functions. Besides that, its therapeutic potential is also enormous [9]. For example, 
ABCC4 (MRP4) is a member of ABC transporter family and belongs to ABCC subfamily [2]. The 
ABCC4 gene was over-expressed in drug-resistance gastric cancer cells. Researchers used RNAi to 
attenuate the expression level of ABCC4 in drug-resistant gastric cancer cells and discovered that 
the use of RNAi restored sensitivity of cancer cells to chemotherapeutic agents [10]. Dönmez Y et 
al silenced pgp/MRP1 of doxorubicin-resistant MCF-7 breast cancer cells by siRNA, which resulted 
in almost completed restoration of the intracellular doxorubicin and further relocalization of the 
drug in the nuclei. What’s more, after silencing MDR1 gene, about 70% of cells were susceptible to 
doxorubicin again [9]. Therefore, Small interfering RNA (siRNA) is a potential therapeutic agent in 
treating human disease, while the use of siRNA is hindered by instability, poor cellular uptake and 
inadequate bio-distribution [11].

Nanoparticulate Drug Delivery Systems (DDS)  

Nanocarriers are designed as an effective delivery system to selectively deliver drugs to cancer cells. 
Comparing with common small drug molecules, nanocarriers exhibit more favorable characteristics 
such as superior pharmacokinetic profiles, prolonged half-life and better tumor accumulations [12]. 
Nanocarriers enter into cells mainly through endocytosis pathway and thus bypass ABC transporter. 
Therefore, nanocarriers might be a helpful tool for drug loading and encapsulation to overcome drug 
resistance [13]. It is reported that nonoparticles loaded with anticancer drugs and MDR modulators 
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may obtain satisfying therapeutic outcomes [14]. Doxorubicin (Dox) 
is a broad-spectrum anticancer drug. However, cancer cells resist Dox 
not long after treated with it. Curcumin (Cur) could be regarded as 
a MDR modulator, it is able to down regulate pgp and reverse multi-
drug resistance of human leukemia HL60 cells, human osteosarcoma 
cells and so on [15,16]. A study found that dual drug (Dox + cur) 
loaded Nanoparticles (NP) not only prolonged the retention time of 
Dox in nucleus but also inhibited the development of drug resistance 
[17]. Another study also showed that the tumor growth inhibitory 
effect of (Dox+Cur)-PMs (Doxorubicin and curcumin polymeric 
micelles) was more efficient than barely combined Dox and curcumin 
or even Dox-PMs [18]. As we have mentioned above, siRNA owns 
potential in dealing with many disease while its use is constrained 
by some fatal shortcomings. At the moment, the advantages of 
nanocarries complement those shortcomings of siRNA just in time. 
Yong Tsuey Li et al developed a pH-sensitive carbonate apatite 
nanoparticle to deliver the siRNA targeting ABCG2 and ABCB1 
gene in human breast cancer cells. The experimental data showed 
that the delivery of siRNA enhanced chemosensity of cancer cells 
to chemotherapeutic agents [19]. Furthermore, Nakamura K et al 
discovered that combination of sibcl-2 RNA-containing nanocarriers 
with 5-Fluorouracil (5-FU) showed better tumor growth inhibition 
in a colorectal cancer xenograft model, compared to single treatment 
[20].

Conclusion
Drug-resistance is a common clinical problem that desperately 

needs to be solved. A better understanding of its mechanisms will be 
helpful in developing efficient methods to overcome drug resistance. 
Compared using these three methods of MDR modulators, siRNAs 
and nonoparticles, it is not difficult for us to find that rational drug 
combinations could maximize the effect. Among them, nonoparticle 
is quite different from the two former methods. It doesn’t possess 
pharmacological effect and is more like a supplementary means to 
get over the disadvantages of MDR modulators or siRNAs. Therefore, 
combination therapy of nanoparticles with chemotherapeutic agents 
and MDR modulators or siRNAs is the most promising way to 
overcome drug-resistance. However, the worry is that the selectivity 
of nanoparticle is not high enough and this may lead to serious side 
effects such as affecting the transport activities of normal cells and 
tissues. In conclusion, improving the selectivity of nanoparticle and 
applying it into clinical therapy might be the next target which we 
should make efforts to achieve in the future.
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