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Abstract
Polycyclic aromatic hydrocarbons, known as PAHs, typically persist in the environment, exposing humans to a  considerable 
health hazard because of the toxins they contain and their capability of triggering cancer. Anthropogenic activities have 
introduced high levels of PAHs into Arabian Gulf countries’  soil and coastal waters. Numerous studies have indicated that 
diverse bacterial  strains can successfully break down PAHs. The deduction made is that biodegradation stands as the top 
choice in terms of  safety, effectiveness, and affordability when it comes to handling PAH-contaminated sites and locations. 
The efficiency of degrading three PAHs was analyzed in this study with the use  of two novel bacterial strains, considering 
the optimal temperature and pH requirements. Coastal sediments from the Eastern Province of Saudi Arabia yielded pure 
cultures of Ochrobactrum intermedium BC1 and Cupriavidus  taiwanensis LA, which were subjected to spiking with 100ppm 
concentrations each for anthracene, fluorene, and naphthalene. They were then incubated at 25°C in  a shake incubator for 
18 days. A solid-phase micro-extraction (SPME) device was used. The extraction of residual PAHs  was the main objective of 
using the SPME device. Gas Chromatography/Mass Spectrometry (GC-MS) was utilized to quantify and  analyze the residues at 
predefined time intervals. By the conclusion of the 18-day timeframe, Ochrobactrum intermedium BC1 degraded naphthalene 
completely. Additionally, anthracene  experienced a reduction of approximately 87%, while fluorene underwent a decrease of 
about 67. Cupriavidus taiwanensis LA degraded anthracene, fluorene, and  naphthalene by 88%, 53%, and 91% respectively. 
The degrading efficiency of these novel strains of  bacteria is evidenced by these results. In closing, these strains can be 
considered potential members of a consortium of microbes  capable of degrading PAHs that can be employed effectively in 
various cleanup endeavors.
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Introduction
Polycyclic aromatic hydrocarbon (PAH) is the name given to 

hydrocarbons that have fused benzene rings [1]. There are several of 
these benzene rings, and they can range in size. The simplest examples 
are naphthalene (two rings), anthracene, fluorene, and phenanthrene 
(each with three rings) [2]. The quantities of PAHs in the environment 
have been considerably increased by anthropogenic activities. PAHs are 
primarily produced by human activities involving the combustion of fossil 
fuels, including the manufacture of coal and petroleum products, vehicle 
emissions, power generation, and industrial furnaces [3]. Manufacturing, 
waste incineration, and the synthesis of specific compounds like coal tar 
and pitch are examples of industrial processes that release PAHs into the 
environment as byproducts or through unintentional spills and leaks [4]. 
Saudi Arabia is one of the largest producers and exporters of oil in the 

world [5]. Despite being crucial for the Kingdom’s economy, this thriving 
oil industry presents a significant threat in terms of oil pollution and 
hydrocarbon pollutants [6,7]. As a result, it is now of utmost importance 
to adopt methods to reduce the impact of PAH contaminants [8,9]. 

PAHs are only partially soluble in water and tend to adhere strongly 
to organic debris, sediments, and soils. As a result, PAHs are typically 
found in higher concentrations in contaminated soils and sediments, 
particularly in areas closest to pollution sources [10]. Additionally, 
PAHs can bioaccumulate within organisms and move up the food chain, 
harming both aquatic and terrestrial ecosystems. Given that PAHs have 
been proven to cause cancer, their environmental persistence is of 
concern [11,12]. They turn into genotoxic substances when specific 
human enzymes convert them into DNA adducts. DNA adducts can lead 
to mutations that eventually result in cancerous tumors in human tissues 
[13]. The United States Environmental Protection Agency (USEPA) has 
designated sixteen (16) PAHs as major pollutants; benzo[a]pyrene, 
chrysene, pyrene, dibenz[a,h]anthracene, fluoranthene, fluorene, 
naphthalene, benzo[b]fluoranthene, acenaphthene, acenaphthylene, 
phenanthrene, indeno[1,2,3-ed]pyrene, benzo[ghi]perylene, anthracene, 
benz[a]anthracene, benzo[k]fluoranthene [14].

The best, safest, and most affordable method for removing PAH 
pollutants is biodegradation [15]. It has been reported that many 
microorganisms, including bacteria, fungus, and actinomycetes, are 
capable of degrading PAHs [16]. The principal degraders of PAHs are 
bacteria, bacterial genera like Bacillus, Paenibacillus, Rhodococcus, 
Pseudomonas, Mycobacterium, and Burkholderia have been thoroughly 
investigated for their potential to break down different types of PAHs [17-
20]. In addition, studies from various part of the world have used other 
species of bacteria to degrade a wide range of PAHs [21-25]. 
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This study seeks to contribute to the body of knowledge on the 
use of indigenous bacterial species within the Kingdom of Saudi 
Arabia to degrade PAHs. It investigates the efficacy of degradation of 
anthracene, fluorene and naphthalene by two (2) novel bacterial strains; 
Ochrobactrum intermedium BC1 and Cupriavidus taiwanensis LA, at 
optimum environmental conditions. 

Materials and Method
Chemicals 

Analytical-grade anthracene, fluorene, and naphthalene were 
acquired from SigmaAldrich (St Louis, MO, USA), stock solutions of each 
PAH were made and kept for subsequent use. Bushnell Haas minerals 
medium (BH) was made in accordance with the protocol, it consists of 
CaCl2, 0.02g/L; KH2PO4, 1.0g/L; MgSO4, 0.2g/L; NH4NO3, 1.0g/L and FeCl3, 
0.05g/L [26]. All the chemicals were of high-quality scientific standards 
(99% purity). 

Microorganisms
The bacterial strains Ochrobactrum intermedium BC1 and Cupriavidus 

taiwanensis LA that were employed in this study were isolated and 
cryopreserved from an earlier work [27]. These strains were activated 
following a pre-culture in nutrient broth.

Biodegradation Experiment
BH media containing phosphate buffer solution which maintain the 

pH at 7.0 ± 0.2 were sterilized via autoclaving at 121°C for 15 minutes to 
eliminate all biota with the potential to degrade PAHs. 2ml of a specific 
PAH (from a 5000ppm stock solution) was introduced to an Erlenmeyer 
flask along with 2ml of bacterial inoculum and 96ml of BH medium, 
resulting in an initial concentration of 100ppm of each PAH in every 
flask. Multiple flasks were prepared this way, so that there were flasks for 
anthracene, fluorene, and naphthalene. Additionally, control flasks were 
made without a bacterial cell inoculum. This was done to account for the 
loss of PAHs brought on by abiotic causes. Flasks were incubated for 18 
days at pH 7 and 25°C while being continuously shaken at 120 rpm in a 
WiseCube Fuzzy System (model WIS-20) shake-incubator. A control and 
two replicates were included in the experimental design.

Sample Extraction
Over the course of the 18-day experiment, residual PAHs were 

extracted from the degradation experiments at intervals of 3 days. A solid-
phase micro-extraction (SPME) technology was used for the extraction. 
With the help of SPME, target analytes can be extracted from aqueous 
samples effectively and without the need for traditional solvents [28]. 
The residual PAHs were removed by placing the SPME fiber into the flask 
containing the samples and agitating the sample with a magnetic stirrer 
for 20 minutes [29].

GC-MS Analysis
Residual PAHs were determined and measured using GC-MS. The 

GC equipment used in this study has the following specifications: 
Injector unit (series 7683B), MS unit (inert XL EI/CI MSD), and Agilent 
Technologies (series 6890N). The GC-MS was used under the following 
conditions: 250°C was specified as the inlet temperature. Initially set at 
50°C, the oven’s temperature gradually rose to 280°C over the course of 
20 minutes.

Injecting the SPME fiber into the GC-MS system’s injection port caused 
the extracted residues to desorb into the GC column. A chromatogram was 
produced after the GC-MS instrument had been running for 20 minutes. 
The peak area of this chromatogram was examined and integrated, and 
the data obtained were used to calculate the amount of residual PAHs.

Statistical Analysis
The experimental data gathered from biodegradation experiment 

during the course of the 18-day incubation period were analyzed using 
Microsoft Excel and Sigma Plot software 11.1.

Results and Discussion
Morphology of Bacterial Strains

Ochrobactrum intermedium BC1 and Cupriavidus taiwanensis LA grew 
abundantly on nutrient agar and form large colonies (Figure 1).

  

Figure 1 Photograph of plates of Ochrobactrum intermedium BC1 and 
Cupriavidus taiwanensis LA

Analysis of Residual PAHs
A GC/MS analysis was conducted on samples that had been spiked 

with anthracene, fluorene, and naphthalene at the conclusion of the 
biodegradation experiments. The mass spectra of anthracene, fluorene, 
and naphthalene, as well as GC chromatograms, are displayed in Figure 
2,3 and Figure 4 respectively.

 

 

Figure 2 Chromatogram and Mass Spectrum of Anthracene.

Anthracene Biodegradation
At the end of the 18-day period, both strains of bacteria degraded 

anthracene at a similar rate. Compared to the 88% decomposition rate 
of Cupriavidus taiwanensis LA, Ochrobactrum intermedium BC1 degraded 
100ppm of anthracene by 87% Figure 5 and Table 1. This result is 
comparable to reports from similar studies. For instance, Ochrobactrum 
anthropi has been shown to grow rapidly in high concentration of 
anthracene [30], and consortia containing a strain of Ochrobactrum, have 
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been reported to completely degrade anthracene in 8-10 days [31,32]. 
Other studies have reported efficient degradation of anthracene using 
strains of Sphingomonas sp. and Stenotrophomonas maltophilia [33,34]. 

 

 

Figure 3 Chromatogram and Mass Spectrum of Fluorene..

 

 

Figure 4 Chromatogram and Mass Spectrum of Naphthalene.

Bacterial Strain Mean ± SD

Ochrobactrum intermedium BC1 12.72 ± 4.58

Cupriavidus taiwanensis LA 12.26 ± 3.73

Abiotic Control 94.82 ± 3.09

Table 1: Levels of unmetabolized anthracene (ppm) in bacterial cultures 
at day 18. (SD = standard deviation).

 

           

 

 

Figure 5 Anthracene Degradation Curve.

Fluorene Biodegradation
The metabolism of fluorene by both strains was relatively slow 

compared to the other two PAHs examined in this study. Ochrobactrum 
intermedium BC1 decreased 100ppm of fluorene by 67% in 18 days, while 
Cupriavidus taiwanensis LA degraded the PAH by 53% Figure 6 and Table 
2. This is not surprising considering that fluorene has been shown to be 
resistant to degradation when a single bacterial species is used [35,36]. 
However, when a consortium is utilized for the biodegradation tests, 
degradation of fluorene has been demonstrated to be much more efficient 
[37,38]. 

Naphthalene Degradation
Ochrobactrum intermedium BC1 degraded naphthalene completely, 

and Cupriavidus taiwanensis LA achieved degradation at the rate of 91% 
Figure 7 and Table 3. The high efficiency of naphthalene degradation 
demonstrated by these strains is likely due to the simple nature of 
naphthalene (two benzene rings) [2]. A few studies have reported similar 
results with a variety of bacterial species, such as, Janthinobacterium, 
Paraburkholderia aromaticivorans, Polaromonas, Proteus mirabilis, 
Pseudomonas aeruginosa, Pseudomonas alcaligenes, Rhodococcus 
quinshengi, Sphingomonas paucimobilis and Stenotrophomonas rhizophila 
[39-43].

     

Figure 6 Fluorene Degradation Curve.
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Figure 7 Naphthalene Degradation Curve.

Bacterial Strain Mean ± SD

Ochrobactrum intermedium BC1 32.85 ± 1.04

Cupriavidus taiwanensis LA 47.09 ± 1.31

Abiotic Control 91.96 ± 1.13

Table 2: Levels of unmetabolized fluorene (ppm) in bacterial cultures at 
day 18. (SD = standard deviation).

Bacterial Strain Mean ± SD

Ochrobactrum intermedium BC1 ND

Cupriavidus taiwanensis LA 8.63 ± 2.11

Abiotic Control 89.38 ± 1.92

Table 3: Levels of unmetabolized naphthalene (ppm) in bacterial cultures 
at day 18.  (ND = not detected, SD = standard deviation).

Conclusion
The result of this study demonstrates the efficiency of the isolated 

bacterial strains in degrading anthracene, fluorene, and naphthalene. 
Ochrobactrum intermedium BC1 degraded naphthalene completely and 
reduced the concentration of anthracene and fluorene by 87% and 67% 
respectively. Cupriavidus taiwenensis LA decreased anthracene, fluorene, 
and naphthalene by 88%, 53%, and 91% respectively.

This high efficacy of degradation capacity of these two bacterial 
strains suggest that they can be optimized for bioremediation of 
contaminated environments and potential members of a consortium of 
microbes  capable of degrading PAHs that can be employed effectively in 
various cleanup endeavors.
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