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Abstract

Female reproduction is affected by various factors such as stress, high-fat diet, and exposure to EDCs during a sensitive period like puberty, 
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Introduction
Female reproduction is affected by various factors such as stress, 

high-fat diet, and exposure to EDCs during a sensitive period like 
puberty, gestation, and lactation [1-3]. The relationship between in 
utero and neonatal exposure to environmental toxicants is obvious as 
the offspring’s impaired reproduction in adulthood as evidenced by 
epidemiological and animal studies. EDCs are one of the factors that affect 
the female reproductive system. It has been reported that EDCs target the 
hypothalamus, pituitary, ovary, and uterus [2].

An endocrine-disrupting compound was defined by the U.S. 
Environmental Protection Agency as “an exogenous agent that interferes 
with synthesis, secretion, transport, metabolism binding action or 
elimination of natural blood-borne hormones that are present in the body 
and are responsible for homeostasis, reproduction, and developmental 
process”. The endocrine disruptors are highly heterogenous and 
are classified as synthetic chemicals used as industrial solvents/
lubricants and their by-products Polychlorinated biphenyls (PCB), 
Polychlorinated biphenyls (PBBs), dioxins, Plastics (Phthalate), Pesticides 
[dichlorodiphenylchloroethane (DDT)], Fungicides (Vinclozolin) [4].

The endocrine glands release hormones into the bloodstream, these 
hormones regulate vital processes such as development and homeostasis. 
There are many factors that determine the availability of hormones 
such as gene and protein expression, exocytosis of vesicles containing 
peptide hormones, steroidogenesis of lipophilic hormones, transport 
via circulation. When a hormone within a physiologically relevant range 
is present, its action is executed in the target organ via receptors. The 
hormones (ligands) have a specific binding affinity with their respective 
receptors. Binding of ligand to its receptor activates membrane-bound 
signalling molecules which initiates a cascade of events ending up in 
specifically assigned functions. At environmentally relevant doses, few 

EDCs bind to hormone receptors and execute agonistic or antagonistic 
actions. The dose-response of EDCs is determined by hormone-receptor 
binding and availability. The conventional hormone concentration-
response curve is a sigmoidal curve (Figure 1). In this case, minimal 
alterations in hormone concentration at the low end of the dose-response 
curve produce exponentially greater differences in effect, than similar 
changes in hormone concentration at the high end of the dose-response 
curve. So very low concentrations of EDCs could change the endogenous 
hormone concentration, producing an adverse effect. In addition, 
hormone receptors expressed at different concentrations will affect the 
various characteristics of the dose-response curve.

 

Figure 1 Schematic example of the relationship between receptor 
occupancy and hormone concentration. In this theoretical example, at 
low concentrations, an increase in hormone concentration from 0 to 
1x causes an increase in receptor occupancy of approximately 50% 
(from 0 to 50%; see yellow box). Yet the same increment in hormone 
concentration at higher doses (from 4x to 5x) causes an increase in 
receptor occupancy of only approximately 4% (from 78 to 82%; see 
red box). (Reprinted from L. N. Vandenberg et al., 2012)

Therefore, EDCs are capable of altering hormone receptors leading 
to fluctuations in the concentration of circulating hormones [5,6]. 
The impact of an EDC on the endocrine system may be permanent or 
temporary based on the duration of exposure and dosage.

Phthalates
Phthalates is one of the widely used endocrine-disrupting chemicals, 

used in a variety of consumer products like childrens’ toys, food-
packaging covers, medical tubing. This ubiquitous chemical can enter 
the human body and can disrupt hormonal functions from early life. The 
impact of early phthalate exposure will be reflected during late childhood 
and adolescence [7].
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Types of phthalates
Phthalates are classified into Di isononyl phthalate (DINP), 

Dibutylphthalate (DBP), Butyl benzyl phthalate (BBP), Diisododecyl 
phthalate (DNOP) [8,9], monocarboxy iso octyl phthalate, mono carboxy 
iso nonyl phthalate, Mono 3-carboxypropylphthalate, mono 2-ethyl 
5-carboxy pentyl phthalate, monoethyl 5 hydroxyhexyl phthalate, mono-
isobutyl phthalate, mono –n-butyl phthalate [10].

Mechanism of Phthalate Action
Peroxisome proliferator-activated receptors (PPARs), ligand-activated 

transcription factors that are members of the superfamily of steroid-
thyroid-retinoid nuclear receptors, can be triggered by phthalates, which 
are endocrine disruptors [11]. The central nervous system, pituitary 
gland, testis, ovary, uterus, prostate, mammary gland, liver, and kidney all 
express PPAR isoforms (α, β or δ and γ) that are encoded by distinct genes 
[12-14]. In order to control the transcription of the target genes, activated 
PPARs form heterodimers with retinoid X receptors (RXR) and bind to 
PPAR response elements (PPRE) in the promoter [13]. Through EREs, 
PPAR/RXR and ER signaling pathways were found to interact in several 
studies [15,16]. Additionally, phthalates have been shown to stimulate 
ER-mediated estrogenic action, according to many investigations [17-22].

Impact of Phthalates on the Uterus
DEHP exposure to pregnant mice affected endometrial receptivity 

and reduced implantation sites via disrupting the MAPK signaling 
pathway and nuclear factor-B signaling pathways [23]. Uterotrophic 
assay explained that estradiol-induced uterine growth was hindered by 
dibenzyl phthalates [24]. In vitro study showed that exposure to DEHP 
and MEHP increased prostaglandin-F2α but decreased prostaglandin-E2 
in bovine endometrial cells [25]. On the contrary, it has been shown that 
phthalate exposure does not have an impact on the uterine tissue. Chung 
et al. [26], reported that polypropylene and polyethylene terephthalate, 
extracted from plastic food containers did not increase uterine weight 
in Sprague-Dawley rats. Exposure to phthalate mixtures during the 
gestational period did not affect estradiol production except at high dose 
(500 mg/kg b.wt/day). However, a dose-dependent impact on the uterus 
was reported in F1, F2 and F3 offspring rats [27].

Phthalates and Endometriosis
A case-control study analyzed 35 cases and 24 controls, the 

cases exhibited higher concentrations of DEHP when compared with 
the controls [28]. A nonsignificant correlation between DEHP and 
endometriosis was reported in another case-control study which included 
97 cases and 167 controls, whereas MEHP and endometriosis were 
having a significantly weak association in the same study [29]. Reddy 
et al. [30], analyzed the concentrations of DBP, BBP, DEHP, and DnOP 
in 49 women with endometriosis, 38 infertile controls, and 21 fertile 
controls, in which women with endometriosis had higher concentrations 
of DBP, BBP, DEHP, and DnOP (p<0.01), therefore higher concentrations 
of phthalates associated with the severity of endometriosis. The same 
study was repeated with a larger sample size of 85 cases and 135 controls 
which supported the previous study of Reddy et al. [31]. Wueve et al. [32], 
reported that in a cross-sectional study,1221 women took part, including 
201 cases, MBP and endometriosis showed a nonsignificant association, 
but MEHP concentrations were higher in the control when compared 
to the cases. An epidemiological study conducted by Huang et al. [33], 
showed that the metabolites of the phthalate (MBP and MEHP) were 
nonsignificantly increased in endometriosis cases (n=28) compared with 
the controls. Banu et al., (2023), reviewed the roles of phthalate in the 
pathogenesis of endometriosis will help [34].

Impact of Phthalates on Puberty
Studies on phthalate exposure and puberty in humans resulted in 

mixed outcomes. A review by Jurewicz and Hanke et al. [35], reported 
a link between urinary levels of phthalates and pubertal gynecomastia, 
as well as a positive correlation between serum levels of phthalates and 
premature thelarche and precocious puberty in girls. In another case-
control study conducted in Taiwan girls showed that urinary phthalate 
metabolites were significantly higher in girls with precocious puberty 
[36]. Higher levels of kisspeptin were recorded in girls with precocious 
puberty suggesting that phthalates might act by increasing kisspeptin 
activity, which in turn promotes puberty [37]. Urinary concentrations 
of high molecular weight phthalates (including DEHP), were linked 
with delayed pubic hair acquisition, and age at breast development was 
older fifth quintile of urinary MBzP concentrations compared to those 
in the first quintile in a study including 1200 peripubertal girls [38]. 
Contradictorily in a small cohort of Puerto Rican girls, significantly higher 
levels of high molecular weight phthalates were identified in 68% of 
blood samples from precocious thelarche patients [39]. Few experimental 
studies reported that DBP and butyl benzyl phthalate (BBP) exposure did 
not affect vaginal opening in rats [40], whereas other experiment states 
that DBP exposure induced earlier pubertal timing in female Sprague-
Dawley rats [41]. A dose-dependent effect of DBP on vaginal opening and 
completely hindered vaginal opening at high doses (750 and 1000 mg/
kg/d) in were observed in phthalate-exposed rats [42]. Late gestational 
to lactational exposure to DBP in rats resulted in poor mammary alveolar 
branching and hypoplasia in the adult female offspring [43]. In contrast, 
a marginal acceleration of mammary gland growth by increasing the 
proliferative index of TEBs and delayed pubertal onset was observed 
in in utero exposure to BBP [44,45]. Several animal studies reported 
adverse female reproductive and developmental outcomes where the 
exposure of specific phthalates [diethyl phthalate (DEP), di(2-ethylhexyl) 
phthalate (DEHP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate 
(DiBP)] significantly reduced embryo survival, increased the incidence of 
resorptions and abortion rate, decreased the number and size of litters 
in rats [47,48]. Zhou et al., (2017) reported that prenatal exposure to a 
phthalate mixture at 200 mg/kg/day increased the time to get pregnant 
in F1 mice (3 months of age) although they exhibited normal mating 
index [49].

DEHP

DEHP are yellow, odourless oily liquids which have a slight solubility 
in water and used to impart flexibility to the Polyvinylchloride materials. 
The high hydrophobicity leads to strong sorption of the high molecular 
weight phthalates to organic matter [50]. The bioconcentration factor of 
DEHP is high, BCF-115 to 851 whereas the water solubility is low (Versar, 
Syracuse Research Corporation). With increasing alkyl chain length, the 
primary biodegradation half-life increases [50]. DEHP has a high tolerated 
daily intake whereas for phthalates there is Temporary Tolerated daily 
Intake [51]. (Figure 2 and Table 1).

 

Figure 2 Structure of DEHP (Smerieri et al., 2015).
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Table 1: PHYSICO-CHEMICAL PROPERTIES of DEHP (Australia’s Di-(-2-
Ethylhexyl) phthalate emission report -2020 to 2021)

CHEMICAL FORMULA C24H38O4

MOLECULAR WEIGHT 390.62

VAPOUR PRESSURE 1.32 mmHg at 200℃

MELTING POINT -50℃
BOILING POINT 230℃ at 5 mm Hg

SPECIFIC GRAVITY 0.986 at 20/20℃

METABOLISM OF DEHP
DEHP is made up of dialkyl or alkyl/aryl esters of 

1,2-benzenedicarboxylic acid [52]. It is a high molecular weight 
compound that is first hydrolysed by pancreatic lipases, liver estrases, 
and nonspecific esterases in the blood [53,54]. The longer chain length 
dialkyl phthalates are DEHP, DnOP, and DiNP are hydrolyzed to their 
respective monoester phthalates which are again extensively metabolized 
by oxidation of their alkyl side chain. Specifically, DEHP is reduced to its 
primary monoester metabolite, mono (2-ethylhexyl)phthalate (MEHP), 
which extends as a multistep oxidative pathway by N- and N-1-oxidation 
of the aliphatic side chain, is converted to mono (2-ethyl-5-hydroxyhexyl) 
phthalate (5OHMEHP) and mono (2-ethyl-5-oxo-hexyl) phthalate (5oxo-
MEHP), and to mono (2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) 
and mono 2-(carboxymethyl) hexylphthalate (2cx-MMHP) and it is 
removed after conjugation with glucuronide.

ABSORPTION
In rats, phthalates are quickly absorbed from intestine in a 

concentration-dependent range, especially in the form of monoesters, 
hydrolysed by gut lipases. Kluwe et al. [55], reported that more than 
90% of DBP and 40–50% of DEHP added to the feed were detected in 
urine following oral administration to rodents, indicating that phthalates 
present in the food were absorbed well. The oral absorption rate for DEHP 
was estimated in a healthy Caucasian male volunteer by measuring the 
levels of metabolites in urine [56]. Sixty seven percent (67%) of the dose 
was excreted in urine after 24 h, followed by an extra 3.8% on the second 
day, it showed that the major part of the ingested DEHP is systemically 
absorbed and excreted in urine.

DISTRIBUTION
Phthalates and their metabolites are widespread throughout the body 

in all tissues. Several reports state that DEHP distribution in different 
species exhibits highest concentrations in liver and kidneys. Phthalates 
were also detected in amniotic fluid, breast milk, seminal fluid, saliva, and 
placenta in human beings [57-60].

BIOTRANSFORMATION
After oral ingestion, nonspecific esterases and lipases cleave di-

ester phthalates into their respective monoester metabolites in the GIT. 
Absorption is completed followed by the conversion of the monoesters 
are to secondary metabolites by many oxidation and hydroxylation 
reactions, which are then eliminated through urine or combined to 
glucuronic acid before excretion. Approximately 80–90% of the urinary 
metabolites is conjugated to glucuronic acid in adult humans [61]. The 
first step of biotransformation has high interspecies variability evidenced 
by kinetic studies in different species, it indicates that lipase activity may 
have a significant variability between species [62].

Impact of DEHP exposure on the female reproductive 
system 

Experimental and observational studies, documented biomonitoring 
reports states the DEHP has adverse effects on the female reproductive 

system by modulating the ovarian and uterine functions. DEHP can pass 
through the placenta and breast milk, if exposed during gestation, it 
affects the foetus and germ cells thereby affecting the reproduction of the 
progeny in adulthood.

Impact of DEHP exposure on Vaginal Opening 
Grande et al. [63], reported that oral doses of DEHP at 5,15,45,135,405 

mg/kg/d from gestation day 6 to lactation day 21 led to a decrease in 
the day of vaginal opening at all doses and delay in the first estrous at 
135 and 405 mg/kg/d. Rattan et al. [64], reported that in F1 generation 
mice 200μg/kg accelerated vaginal opening, in F2 generation mice 500 
mg/kg DEHP exposure accelerated the vaginal opening, in F3 generation 
mice 200 μg/kg, 500 mg/kg, 750 mg/kg DEHP exposure accelerated the 
vaginal opening with no change in the levels of serum estradiol at PND 21. 
DEHP at 30 or 300 mg/kg by gavage from GD 8 to PND 21 delayed vaginal 
opening in the F1 offspring rats [65].

Impact of DEHP exposure on the length of estrous cycle 

Few studies have shown that DEHP exposure increased estrous cycle 
length and induced irregular estrous cycles after exposure to 25 mg/km3 
through inhalation, or oral doses greater than 1000 mg/kg/d in Wistar 
and Sprague–Dawley rats, and in mice [66-68]. Oral administration 
of 3000mg/kg/d DEHP for Sprague Dawley rats starting from 2 weeks 
before mating and till day 7 of pregnancy for a female fertility study and to 
another set 3000 mg/kg/d DEHP was administered for 4 weeks. Irregular 
estrous cycle was recorded in the 2-4week study group and decrease in 
the body weight and atropy in the uterus [69]. Estrous cycle was altered 
in the F1 generation at the maternal exposure of 200 μg/kg/day & 500 
mg/kg/day, increased the time spent in estrus in 20 μg/kg/day and 200 
μg/kg/day in F2 generation and in 20 μg/kg/day F3 generation rats in the 
experiment by Rattan et al., [64].

Impact of DEHP Exposure on Reproductive Indices 
Many reports stated using high doses of DEHP found negative impact 

on pregnancy. Maternal weight and food consumption, number of pups 
born, pup weight and the rate of post-implantation loss were affected at 
oral doses from 500 to 1500 mg/kg/d as well as 10 ml/kg/d and 1% in diet 
in mice and rats [70-77]. Dietary administration of 500 mg/kg/d DEHP 
for 8 weeks to CH3/N mice led to degeneration in the blastocysts in the F1 
pre-implantation embryos [78]. Rattan et al. [64], reported that fertility 
index was reduced in the F1 generation at 20μg/kg/day and 200μg/kg/
day after the prenatal DEHP exposure. The pregnant mice received DEHP 
at 0, 250, 500 and 1000 mg/kg/day from day 1 of gestation to day 6 of 
gestation and it was found that the number of implantation sites was 
significantly reduced in the 1000 mg/kg/day DEHP group [79].

Impact of DEHP Exposure on Adult Uterus
The adult female Wistar rats were treated with DEHP orally with 

1,10,100 mg/kg/body weight/day and it led to increase in ovarian 
hormones and their receptor levels in the uterus and morphological 
abnormalities such as thinning of the layers and disruption of glandular 
epithelium [80]. Kim et al., 2018 [81] stated that ten- to twelve-week-
old CD-1 mice were fed drinking water containing NP (50 or 500μg/L) 
or DEHP containing (133 or 1330μg/L) for 10 weeks and it resulted in 
endometrial and myometrial thickness increased in 133 and 1330μg/L 
DEHP, 50 & 500 μg/L NP. In addition to it, the height of luminal epithelial 
cell decreased in NP groups and increased in 50μg/L DEHP group.

Impact of DEHP exposure on the ovary and uterus of 
F1 progeny 

Zhang et al. [82], stated that water containing DEHP 40μg /kg/ day 
or normal saline was gavaged to CD-1 mice from 0.5 dpc to 18.5 dpc, it 
led to reduction in maternal serum estradiol levels and induced ovarian 
development deficiency in the F1 offspring mice. Somasundaram et al. 
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[83], reported that 1,10,100mg /kg/DEHP, gestational and lactational 
exposure to Wistar rats led to decreased body weight, ovarian weight, 
uterine weight, and serum estradiol levels in F1 offspring rats, in addition 
to it the expression of proteins involved in steroidogenesis were altered 
and the effect was profound at 100mg/kg/day DEHP exposure.

Impact of DEHP exposure on the miRNAs

miRNAs
miRNAs are short sequences, made up of 22 nucleotides, non-coding 

RNAs. miRNAs regulate post-transcriptional protein expression. miRNAs 
are encoded by a single gene controlled by their cognate promoters 
and regulatory sequences and are arranged in clusters [84]. They are 
transcribed from intergenic sequences of the protein-coding genes using 
RNA polymerase II and RNA polymerase III [85,86]. Drosha RNase III 
endonuclease or by an alternative Drosha-independent mirtron cleaves 
the primary miRNAs into stem-loop pre-miRNAs which are 60-70 nt 
long. The pre-miRNAs are then transported to the cytoplasm and it is 
further cleaved by the Dicer enzyme, in this process the loop structure 
is removed and mature miRNA duplexes are formed overhanging at the 
3’ end. miRNA duplexes are guided to the Argonaute (AGO) protein part 
of the RNA-induced silencing complex (RISC) by the Dicer and the AGO 
protein uncoils the duplexes, resulting in single-stranded miRNA-5p 
and miRNA-3p products. The mature miRNA is incorporated into RISC. 
The miRNA-RISC complex binds to the target mRNAs and represses the 
ribosomal assembly and deactivates the target mRNA. The mRNAs which 
are bound to the miRNA-RISC complex are further stored in P-bodies, 
and cytoplasmic structures, and either released upon a cellular signal 
or destroyed [87,88]. The physiopathological profile of the cell, the 
microenvironment, and the milieu regulates the biogenesis of miRNAs 
and the expression of the miRNAs in the endometrium is cell-dependent. 
Single nucleotide polymorphism and epigenetic modifications, 
interactions with RNA-binding proteins regulate miRNA expression and 
maturation [88]. MiRNAs are distinctive based on their complementarity 
to their target miRNA [84]. The extent of complementarity determines 
whether the target mRNA is degraded or its translation is blocked. 
MiRNAs act according to the target mRNA binding site and can activate 
gene expression [89]. A single miRNA can regulate many proteins and one 
mRNA can also be regulated by various miRNAs [88]. (Figure 3).

 

Figure 3 miRNA Biogenesis (Luan et al., 2015)

Association of DEHP exposure and the miRNA levels
Chang et al. [90], stated the role of MEHP-induced reactive oxygen 

species (ROS) for genotoxicity and the toxicity of MEHP downregulated 
the miR-let-7a and miR-125b in AS52-mutant cell (ASMC) clones. The 
carcinogenicity of MEHP in Chinese hamster AA8, UV5, and EM9 ovary 
cells, and it’s capacity to induce epigenetic modifications were proved 
(Chang et al., 2017). Forty maternal urine samples were analyzed for 
MEHP, MBzP, MBP, MiBP, and total BPA were analysed. The Limits of 
detection (LOD) for metabolites were fixed at 6.41, 0.23, 1.08, 0.15 
and 22.2 ng/mL for BPA, MiBP, MBP, MBzP, and MEHP respectively. For 
concentrations below the LOD, a value equal to each sample’s specific LOD 
divided by the square root of 2 was used. Further selected miRNAs were 
analyzed in the serum of 22 GDM patients and 18 non-diabetic women. 
It was found that relative expression levels of miR-29a-5p, miR-29a-3p 
and miR-330-3p were significantly up-regulated in the serum from GDM 
patients compared to serum from the non-diabetic women [91]. Bai et 
al. [92], reported that ten urinary phthalate metabolites including mono-
n-butyl phthalate (MBP), mono-iso-butyl phthalate (MiBP), mono-benzyl 
phthalate (MBzP), mono-methyl phthalate (MMP), mono-ethyl phthalate 
(MEP), mono-n-octyl phthalate (MOP), mono-ethylhexyl phthalate 
(MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-
ethyl-5- hydroxyhexyl) phthalate (MEHHP), and mono-(2-ethyl-5-carbox-
ypentyl) phthalate (MECPP), were determined. The limits of detection 
(LODs) for urinary phthalate metabolites were fixed in the range of 0.2–
2.0 ng/mL, and values less than the LODs were imputed with LOD/√2. It 
was observed that the spike recoveries of the 10 phthalate metabolites 
ranged from 61.0% to 91.3% and positive associations of phthalate 
metabolites mixture with miR-146a, miR-125b, and miR-222 [92].

Conclusion
The available research mainly focuses on the impact of maternal 

exposure to DEHP on the ovaries of offspring animals. However, the 
uterus is the organ targeted by ovarian steroids, and the effect of ancestral 
DEHP exposure on the uterus of offspring has not been studied. DEHP is 
a weak estrogenic compound and can disrupt the actions of estrogen in 
the uterus, leading to impairment of uterine development and function. 
Prenatal and postnatal DEHP exposure affects the uterine environment, 
increasing the risk of miscarriage and pre-term delivery of the fetus. 
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Additionally, there is a possible transfer of uterine dysfunction to the 
offspring through miRNAs, which are an epigenetic signature passed 
on through the maternal lineage, further exacerbated in adulthood. It is 
essential to study how phthalates alter the epigenetic assets of cells, as it 
can help us understand the uterine dysfunction caused by EDCs.

Method of search
Keywords such as Phthalate, DEHP, female, Rat, Ovary, Uterus, and 

miRNA were used during Pubmed and Google searches. Research and 
review articles which had relevance to the topic were chosen to draft the 
review.
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