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Introduction
Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine protein kinase that plays an 

important role in different biological processes, including early embryo development, oncogenesis, 
neurodegenerative disease, diabetes, inflammatory conditions and cell death [1-3]. Farther, this 
kinase has been reported to phosphorylate more than 50 proteins, including different transcription 
factors as nuclear transcription factor κB (NF-κB), p53 and β-catenin [2, 4]. Molecular cloning 
showed two genes encoding different kinase isoforms, GSK-3α and GSK-3β, ubiquitously expressed 
in mammalian tissues [5, 6]. GSK-3α presents an 85% amino acid identity to GSK-3β and differs 
from the other isoform of an N-terminal glycine rich extension [5]. GSK-3β is the most studied form 
of GSK-3; its gene including 12 exons is located on the chromosome 3 (q13.3) and produces a 7134 
bp mRNA (NM_002193.3). Human GSK-3β is a 47 kDa protein with a small N-terminal domain, 
a kinase domain, presenting an ATP binding site and a protein active site and, finally, a C-terminal 
domain (Figure 1). Mukai et al. documented also an alternative splice variant of GSK-3β, GSK-3β2, 
with a 13 amino acid insert in the catalytic domain [7]. 

Regulation of GSK-3β
Two key functional domains of GSK-3β have been identified (Figure 2), a primed-substrate 

binding domain that recruits substrates to the protein, and a kinase domain with phosphorylation 
activity [8-10]. GSK-3β has two kinds of target proteins: primed and unprimed substrates. Primed 
substrates consist of proteins that are pre-phosphorylated at a “priming” site located at C-terminus 
of the consensus sequence: S/T (target residue)-X-X-X-S/T (priming residue). The priming 
phosphorylation allows the substrate to bind the primed-substrate binding domain and places the 
target serine/threonine adjacent to the kinase domain of GSK-3β. This event greatly increases the 
efficiency of substrate phosphorylation by 100-1000 fold [11]. However, some GSK-3β substrates 
lack a priming site. These unprimed proteins often display negatively charged residues in place of 
the priming residue that contribute to optimize the orientation of the kinase domain and to place 
the substrate at the correct position within the catalytic pocket.

Phosphorylation

GSK-3β is inactivated by diverse stimuli and signaling pathways. In particular, phosphorylation 
at the N-terminal Serine 9 (S9) residue is the most frequently examined mechanism that negatively 
regulates the activity of the kinase. This modification induces the interaction between the S9 and 
the substrate docking motif in the binding domain, generating a pseudo substrate that inhibits the 
substrate access to the catalytic groove of the kinase [12] (Figure 3). Several kinases can phosphorylate 
this serine, including Akt, Protein Kinase A (PKA), Protein Kinase C (PKC), p70 S6 Kinase (S6K) 
and p90 ribosomal S6 kinase [13-15] (Figure 4). Thus, many signaling pathways that activate these 
kinases can inhibit GSK-3β by S9 phosphorylation. A consequence of the GSK-3β inhibition is that 
concentration of primed substrates increases sufficiently to compete with the pseudo substrate [8]. 
However, it should always be borne in mind that the serine-phosphorylation inhibitory mechanism 
does not necessarily regulate the phosphorylation of non-primed substrates by GSK-3β. Therefore, 
if a non-primed substrate is under investigation, examining changes in the serine-phosphorylation 
of the kinase should be interpreted cautiously. 
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Abstract

Glycogen Synthase Kinase-3β (GSK-3β) is a key component of a complex array of cellular processes. 
Several mechanisms are involved in controlling its activity, including phosphorylation, protein complex formation 
and sub cellular distribution. Aberrant GSK-3β action has been implicated in many diseases and disorders, such 
as cancer, heart disease, metabolic and neurological disorders. More recently, GSK-3β has been identified as a 
crucial regulator of the balance between pro and anti-inflammatory cytokine production. This review will highlight 
the immunological importance of GSK-3β and the latest discoveries that led to the identification of a new central 
role of GSK-3β in tumor immunity.
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In opposition to this inhibitory regulation, GSK-3β is activated 
by phosphorylation of Tyrosine 216 (Y216) residue that is located in 
the “activation loop” of the enzyme (Figure 5). Y216 might act as an 
autophosphorylation site or as a substrate for other protein tyrosine 
kinases, such as Pyk2, MEK1 and SRC-family tyrosine kinases [16-
19]. Several proapoptotic stimuli were also demonstrated to increase 
the activity and Y216 phosphorylation of GSK-3β [20], but the 
kinases mediating this modification remain unclear. Overall, studies 
of the tyrosine phosphorylation of GSK-3β are relatively sparse. 
In particular, the finding that Fyn, a member of the src tyrosine 
kinase family [21], and calcium [22] participate in regulating the 
activating phosphorylation of GSK-3β indicates that this modulatory 
mechanism may be involved in many intracellular signaling cascades.

Cellular Localization and Complex Formation 

In addition to phosphorylation, mechanisms that regulate the 
intracellular localization of GSK-3β control its access to substrates. 
Although GSK-3β is traditionally considered a cytosolic protein, it is 
also located in nuclei and mitochondria, where it is highly activated 
compared with its cytosolic counterpart [23, 24]. Nuclear GSK-
3β is particularly interesting because it regulates many important 
transcription factors, such as cAMP Response Element-Binding 
protein (CREB), GATA binding protein 4 (GATA4), Hypoxia-

Inducible Factor 1 (HIF-1), Nuclear Factor of Activated T-cells 
(NFAT), NF-κB, Notch and p53. Meares et al. reported the existence 
of a bipartite nuclear localization sequence in GSK-3β, consisting 
of residues 85-103, that were identified by assessing the sub cellular 
localization of mutants created by site-directed mutagenesis [25]. 
The nuclear level of GSK-3β is not static but changes dynamically in 
response to intracellular signals; in particular, kinase levels fluctuate 
during the cell cycle and can rapidly increase during the apoptotic 
process, enabling GSK-3β to modulate gene expression [23, 26]. In 
opposition to the nuclear level of GSK-3β, which is decreased by 
activated Akt [24], mitochondrial GSK-3β is inhibited by activated 
Akt without affecting its protein levels [27]. Moreover, a recent study 
has shown that mitochondrial translocation of GSK-3β, triggered by 
exogenous hydrogen peroxide, induced enhanced Reactive Oxygen 
Species (ROS) production and that both mitochondrial translocation 
of GSK-3β and ROS production were dependent on GSK-3β kinase 
activity [28]. Further studies will be needed to better understand the 
regulation of the nuclear and mitochondrial localization of GSK-3β.

Complexes that contain GSK-3β are very important in regulating 
its actions. It is also intriguing to note that its activity can also regulate 
the actions of some GSK-3β-inhibiting kinases. This bi-directionality 
has been studied particularly in the Akt–GSK-3β interaction, in 
which Akt not only inhibits GSK-3β but GSK-3β can also regulate 
Akt [29]. The best characterized protein complex system that involves 
the kinase is the Wnt signalling pathway [27]. In absence of the 

Figure 1: The GSK-3β gene and protein structure. 
A. GSK-3β gene with its 12 exons; the grey boxes are Untranslated Regions 
(UTR). 
B. Protein structure from the amino to the carboxy-terminal region. The 
Kinase Domain presents, starting from the left side, a Nucleotide Binding 
Region (NBR), an ATP Binding Domain (ABD) and a protein Active Site 
(AS). The amino acid number that outlines the different domains is shown.

Figure 2: The structure of GSK-3β. The N-terminal domain (blue) 
corresponds to the β-strand domain that recruits substrates to the protein. 
The α-helices (green and light blue) correspond to the kinase domain.

Figure 3: Conformational change after S9 phosphorylation. Before the 
phosphorylation (A) the conformation of the β-strand containing S9 allows 
the substrate access to the catalytic groove of the kinase (light blue). After 
phosphorylation (B) S9 residue interacts with the substrate docking motif in 
the binding domain, generating a pseudo substrate.

Figure 4: Kinases primarily involved in GSK-3β inhibition. Several kinases 
can phosphorylate GSK-3β at S9, including Akt, Protein Kinase A (PKA), 
Protein Kinase C (PKC), p70 S6 Kinase (S6K) and p90 ribosomal S6 kinase.
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Wnt ligand, GSK-3β forms a complex with Axin, β-catenin, Casein 
Kinase I (CKI) and Adenomatous Polyposis Coli protein (APC). CKI 
phosphorylates β-catenin to prime it for phosphorylation by GSK-3β. 
These two events induce the proteasomal degradation of β-catenin. 
After Wnt stimulation, Frequently Arranged in T cell lymphomas 
(FRAT) and Disheveled (Dvl) are recruited into the GSK-3β complex, 
preventing β-catenin phosphorylation and enabling its translocation 
into the nucleus. Similarly, GSK-3β plays a role in the regulation of 
the Hedgehog pathway [30]. 

Finally, GSK-3β is regulated by additional post-translational 
mechanisms, such as cleavage by calpain [31, 32] and by matrix 
metalloproteinase-2 [33], which may affect its selection of substrates, 
acetylation [34], mono-ADP-ribosylation [35,36] and citrullination 
[37]. These and other phosphorylation-independent post-
translational mechanisms seem likely to contribute in regulating the 
multiple actions of GSK-3β.

GSK-3β and Immunity
Innate Immune Response

Inflammation represents a primary response to infection and it is 
critical for both innate and adaptive immunity. 

Recently, it has been documented that GSK-3β activity is crucial 
to regulate inflammatory response either promoting or inhibiting the 
process through the expression of pro or anti-inflammatory cytokines 
[38].

Several studies have demonstrated that inflammation is regulated 
by the Toll-Like Receptor (TLR)-dependent activation of PI3K/
Akt signaling pathway [39-42]. Martin et al. [43] established that 
the PI3K/Akt-dependent inhibition of GSK-3β activity in human 
monocytes, stimulated with Lipo Poly Saccharide (LPS), differentially 
affected the nature and magnitude of the inflammatory response 
through the activation of TLR2. This resulted in the production of the 
anti-inflammatory cytokine IL-10 and in a strong reduction of pro-
inflammatory cytokines IL-1β, IL-6, Tumor Necrosis Factor (TNF), 
IL-12 and Interferon (IFN)-α (Figure 6). The GSK-3β inhibition 
negatively modulated the inflammatory response because it 
differentially affected the nuclear amounts of the transcription factors 
NF-κB (p65 subunit) and CREB, interacting with the co activator CBP. 
In a recent study it has been also demonstrated that the mammalian 
Target Of Rapamycin Complex 1 (mTORC1) negatively regulates 
the activity of GSK-3β through the activation of S6K, conditioning 
the inflammatory response in LPS-stimulated human monocytes 
[44]. Furthermore, the inhibition of GSK-3β by mTORC1 affected 
the association of p65 subunit and CBP. GSK-3β activity induced 
a decrease of the anti-inflammatory cytokine IL-1Rα levels and 
increased the levels of the inflammatory cytokine IL-1β, confirming 
the model proposed by Martin et al., in which GSK-3β in its active 
form acts as a positive regulator of inflammation. Moreover, GSK-3β 
inactivation might be able to modulate the transcription of specific 
pro-inflammatory genes containing a T-Cell Factor/ Lymphoid 
Enhancer-binding Factor (TCF/LEF) binding site in their promoter. 
Indeed, it was recently demonstrated that β-catenin induces pro and 
anti-inflammatory responses simultaneously as a result of differential 
gene expression carried out by Wnt/β-catenin signaling through a 
TCF/LEF consensus sequence and NF-κB modulation in the context 
of liver cancer related inflammation [45]. 

Adaptive Immune Response

The adaptive immune response depends on successful antigen 
presentation by Major Histocompatibility Complex (MHC) and 
MHC-like molecules, and recent findings raise the possibility that 
GSK-3 is involved in antigen presentation by antigen-presenting 
cells. Maintenance of GSK-3β inhibition is critical for CD4+ and 
CD8+ T cell survival after activation [46]. However, memory CD4+ T 
cells are less dependent than naive CD4+ cells on inhibition of GSK-
3β for proliferative responses [47]. Expression of constitutively active 
GSK-3β decreased proliferation of CD8+ cells and suppressed TCR-
induced IL-2 production [48], whereas inhibition of GSK-3 increased 
IL-2 production in both CD4+ and CD8+ T cells [46-50]. Similar to 
the innate immune system, GSK-3 inhibition reduced the production 
of several pro-inflammatory cytokines by splenocytes stimulated by 
myelin oligodendrocyte glycoprotein peptide after isolation from 

Figure 5: GSK-3β activation by of Y216 phosphorylation. Y216 (red residue) 
is located in the “activation loop” of the enzyme, between the kinase domain 
and the binding domain.

Figure 6: Role of GSK-3β in the innate immune response. After GSK-3β 
inhibition, many important transcription factors can migrate into the nucleus 
and regulate the production of several pro and anti-inflammatory cytokines.
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experimental autoimmune encephalitis-induced mice [51] and 
increased the production of anti-inflammatory IL-10 by memory 
CD4+ T cells and by B cells. 

Inflammation and Cancer

Cytokines generated by activated immune cells are considered 
important components in orchestrating the relationship between 
inflammation and cancer. Studies conducted over the last several years 
have elucidated the molecular mechanisms of intracellular signaling 
pathways of inflammatory cytokines for tumor development [52, 53]. 
GSK-3β has been identified by recent findings as vital factor in the 
inflammation process [43].

GSK-3β is mostly known as a pro-inflammatory agent and 
drugs that inhibit its activity are being developed for diseases such 
as Alzheimer’s, cancer, diabetes and immune disorders. Indeed, 
Balamurugan et al. demonstrated that GSK-3β can act in cooperation 
with the protein FBXW7 as inhibitor of the inflammatory response 
[54]. In this work, authors showed a dual role of the kinase that might 
complicate clinical applications of drugs targeted at inhibiting GSK-
3β. 

Another study has pointed out how the over expression of the C-C 
chemokine Receptor type 7 (CCR7), involved in the development and 
progression of chronic inflammatory diseases and cancer, was partly 
mediated by the Akt/GSK-3β signaling pathway in colon cancer [55]. 
The inhibition of the Akt/GSK-3β cascade may emerge as potential 
therapeutic strategy to reduce CCR7 expression in this neoplasm. 

Moreover, the ability of GSK-3β inhibition to differentially 
regulate pro and anti-inflammatory cytokine production and 
its functional role in adaptive immune responses might play an 
important role in the progression of esophageal cancer [56]. 

It has also been demonstrated that some inflammatory mediators 
in tumor microenvironment, including TGF-β and IL-6, contributed 
to cancer invasion and metastasis [57]. In particular, Salim et al. 
suggested a direct effect of the pro-inflammatory mediator leukotriene 
D4, a component of the tumor microenvironment, in regulating the 

proliferation and migration of colon cancer cells, most likely via a 
GSK-3β/β-catenin signaling pathway [58]. 

In a recent study, authors investigated the effect of flavonoid 
apigenin treatment on the expression of genes involved in 
inflammation and cancer in human pancreatic cancer cells [59]. The 
results showed that apigenin inhibited the GSK-3β/NF-κB signaling 
pathway, leading to an induction of the mitochondrial pathway of 
apoptosis in cell lines.  Moreover, gene expression analysis revealed 
apigenin treatment up regulated 59 genes and down regulated 63 
genes related to inflammation and cancer.

It is currently recognized that chronically elevated TNFα, a major 
pro-inflammatory cytokine, in tissues may promote tumor growth, 
invasion and metastasis [60]. Michalaki et al. demonstrated that 
TNFα expression is significantly increased in the serum of prostate 
cancer patients and associated with tumor metastasis [61]. Some 
authors demonstrated that Akt/GSK-3β-mediated stabilization of 
Snail is required for TNFα-induced epithelial-mesenchimal transition 
in colorectal and prostate cancer cells [62, 63]. 

Furthermore, Vadrot et al. reported that GSK-3β was involved 
in TNFα-induced mitochondrial DNA (mtDNA) depletion and that 
p53 was necessary for the recovery of mtDNA content [64]. They 
suggested that p53 binding to GSK-3β, TFAM and mtDNA regulatory 
region D-loop could participate in this recovery by stimulating 
mtDNA repair. 

Given the central role of GSK-3β in all the aforementioned 
pathways, the therapeutic potential of its inhibitors has become an 
important area of investigation (Table 1).

Conclusions
GSK-3β, identified initially as a kinase involved in the glycogen 

metabolism, has been recognized as an important mediator of the 
innate and adaptive immune systems. The regulatory effects of GSK-
3β and its involvement in the inflammatory processes may have 
strong implications in cancer development. Based on this hypothesis, 
the discovery of selective GSK-3β inhibitors could have an important 
role in giving new therapeutic alternatives in cancer treatment. 
Nevertheless many questions remain unanswered and the role of 
GSK-3β and its potential application in tumor immunity become an 
interesting aspect to clarify. 
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