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In the nervous system, astrocytes are organized to form a giant syncytium through gap 
junctions, which are intercellular membrane channels. This organization by gap junctions is rarely 
seen in mature neurons and provides the basis for the difference in function between astrocytes and 
neurons. Astrocytes use gap junctions to redistribute molecules[1]and, more importantly, to confer 
is potentiality on the syncytium[2], thus providing homeostatic function, including the clearance 
of elevated K+ and glutamate in extracellular space. Whether or how dysfunction of astrocytes 
syncytium causes neurological disorder is still uncertain despite extensive studies. This brief review 
focuses on recent neurological disorder findings and provides a view about is potentiality in an 
astrocytic syncytium and its relation to disorder based on these findings.

The K+ spatial buffering mechanism has three steps: K+ uptake in regions where K+ is elevated, 
intercellular transfer, and release in distant regions [3]. Based on Ohm’s law, the K+ uptake or release 
rate (I) is determined by both membrane resistance (the inverse of membrane conductance, RM or 
1/GM) and driving force, which is the difference between equilibrium and membrane potentials in 
individual astrocytes (EM-VM), or I = (EM-VM)GM. The intercellular transfer rate (IT) is determined by 
both gap junction resistance (the inverse of gap junctional conductance, Rg, or 1/Gg), and the transfer 
driving force that is the difference in equilibrium plus membrane potential between neighbors 
((EM1-VM1) - (EM2-VM2)), or IT = [(EM1-VM1) - (EM2-VM2)]Gg. At a given distribution of extracellular 
K+  concentrations in a syncytium, physiologically or pathologically, the ability of clearing K+ could 
be simplified to be determined by only two components: gap junctional coupling between neighbors 
and K+ conductance in individual cells [2]. In other words, those two components, together with two 
driving forces determined by the same components [2], affect K+ clearance in each step of buffering.

Isopotentiality facilitates all three steps [2]. If isopotentiality is disrupted due to one or two 
components, K+ buffering would be impaired and neurological disorders would likely develop. The 
first component is gap junctional coupling that is extremely strong in an astrocytes syncytium. 
Therefore, when gap junction coupling decreases, even at a small scale, both driving forces may 
decrease greatly, this in turn slows K+ clearance. Additionally, weakening coupling can decrease K+ 

transfer rate, thus resulting in further decrease of K+ clearance. Altogether, K+ flow rate decreases 
in each step after coupling becomes weak. In mature mouse astrocytes, the main gap-junction 
proteins are Cx43 and Cx30. Genetic deletion of these Cxs causes K+ elevation in brain slices [4] 
and neurological disorders in mice [5] such as memory deficit. Gap junction uncoupling underlies 
human temporal lobe epilepsy [6]. Therefore, some neurological disorders result from deficit of gap 
junctions; however, their relative contribution is not clear.

The second component affecting syncytial function is K+ conductance, which is also highly 
expressed in astrocytes and is contributed to mainly by Kir4.1 channels. When K+ conductance 
decreases, for example by Kir4.1 down-regulation, both uptake and release rates decrease directly. 
This results in decrease of K+ clearance. This decreasing conductance would strengthen the coupling 
within the syncytium [2], and thus enhance both driving forces that would facilitate K+ clearance. 
Therefore conductance has two opposite sides affecting K+ clearance. The side that prevails will 
determine the net effect on K+ clearance. A recent study using Huntington’s disease model mice 
shows that Kir4.1 deficits elevate striatal extracellular K+ and contribute to dysfunction of striatal 
medium spiny neurons [7]. Those data suggest the net effect is impairment of K+ clearance, evidenced 
by data that forced Kir4.1 expression rescued some neuron deficit. However, it is not clear whether 
gap junction deficits exist and contribute to the impairment of K+ buffering in this study. If K+ 
conductance is lowered further, such as knock out of Kir4.1 in astrocytes [8], there is more severe 
impairment of K+ buffering [7].

In terms of K+ homeostasis through buffering, many neurological disorders may have a 
common mechanism, for example, local K+ elevation and consequent epileptic activity. Therefore, 
to determine which component is predominant, it is desirable to investigate those two components 
together. Also, the above analysis shows gap junction coupling may be used to compensate for 
Kir4.1 deficiency because of opposite effects on syncytial function. It should be interesting to test 
this experimentally in neurological disorders, exploring therapeutic intervention in a new direction.
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