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Editorial
The neonatal astrocytes used to be considered a population of stage specific, proliferating 

immature astrocytes. Over the course of brain maturation, the newly generated astrocytesundergo 
extensive changes in gene expression, form spatially exclusive domains, connect through gap 
junctions into a syncytial network, and interact with and envelop blood vessels as part of the 
blood brain barrier [1-8]. Over the past two decades, increasing evidence shows that the very same 
“immature” astrocytes are the sculptors of synaptogenesisand facilitators of myelination in the CNS 
[8-10].

Interestingly, similar to proliferating neonatal astrocytes, various neuropathlogical disorders 
stimulate mature astrocytes to reenter the cell cycle for proliferation. The disease conditions also 
alter the morphology of differentiated astrocytes, disrupt well-established gap junction coupling and 
syncytial organization of astrocytic networks, and induce changes in gene expression and functional 
properties [11,12]. A hypothesis that remains to be tested is whether reactive astrocytesindeed 
recapture the gene expression profile and functional phenotype of neonatal astrocytes. An answer 
to this question is important because exciting discoveries are emerging from neonatal astrocytes 
that may shed new light on the development of a therapeutic strategy for disease treatment.  

Proliferating Astrocytes in Postnatal Brain Are Diverse in Origin
Astrocytes are the last cellular constitute generated in the brain. In various regions of the rodent 

brain, their generation occurs around birth (E20-P3). This first cohort of astrocytes mainly arises 
from direct transformation of Ventricular Zone (VZ) radial glia and asymmetric division of glial 
progenitor cells [13-19]. After a short dormant period [4], the second cohort of astrocytes is mainly 
produced through symmetric division of differentiated astrocytesand to a less extent asymmetric 
division of NG2 glia in the ventrolateral forebrain [5,20]. In contrast to neurons that are majorly 
produced before the birth, there is a 6-8 fold increase in the number of astrocytes in the postnatal 
developing brain. 

Functional Diversity of Astrocytes Generated in Early and Late Postnatal Brain 
While a universal marker for identification of astrocytes in the developing and adult brain is still 

unavailable [10], our recent study confirmed that the eGFP in ALDH1L1-eGAP transgenic mice and 
a chemical marker SR101 can be reliably used to identify neonatal astrocytes in mouse hippocampal 
stratum radiatum [24]. In this study, astrocytes generated from P1-3 are electro physiologically 
homogeneous. Specifically, these neonatal astrocytes express a distinct set of rectifying K+channel 
conductance’s, namely, depolarization-induced voltage-gated outwardly transient (IKa), delayed 
rectifying (IKd), and inwardly rectifying (IKin) conductance. This differs from the linear passive 
conductance of mature astrocytes [25]. Also, astrocytes generated around birth exhibit a more 
negative membrane potential (VM) than astrocytes in the adult brain. Importantly, astrocytes 
produced in the P8-13 cortex through symmetric cell division share the same electrophysiological 
features as astrocytes in the adult brain [5]. This indicates strongly that proliferating astrocytes in the 
postnatal brain are functionally diverse. 

It is also of great interest to know that neither proliferating astrocytes nor astrocytes in the 
adult brain express voltage-gated Na+channel current (INa), whereas INa is a characteristic of NG2 
glia in the developing and mature brain [26-28]. Thus lack of INa appears to be diagnostic for 
differentiating astrocytes from NG2 glia.

The difference in IKin expression between early and later proliferating astrocytes is directly 
relevant to the function of these astrocytes. We show that a 6-fold lower inward K+ current density 
in P1-3 astrocytes is associated with a 50% deficiency in K+buffering capacity compared to mature 
astrocytes [24]. As will be discussed later,P1-3 astrocytes also lack a maturely established syncytium 
to achieve a “sustained K+ uptake” mode that would further undermine the K+uptake and spatial 
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redistribution in the neonatal brain [29]. How the observed difference 
in K+ conductance and gap junction coupling would be etiologically 
relevant to neurological disorders in the neonatal brain is yet 
unknown. 

Proliferating Astrocytes form Discrete Gap Junction 
Coupling in the Early Postnatal Brain

In the neonatal brain, astrocytes converge from difference sources. 
The question of how the nascent astrocytes connect with each other 
through gap junctions in their early life has been recently answered 
[24].  It appears that newborn astrocytes in the embryonic and early 
neonatal brain are initially in isolation, but quickly establish cell-to-
cell coupling with neighboring astrocytes, because the percentage of 
coupling astrocytes increases rapidly from P1-3. 

Interestingly, in the P6-13 postnatal cortex, locally produced 
astrocytes are electrically passive, functionally mature and 
integrated into a network during symmetrical cell division [5]. These 
independent observations again indicate that proliferating astrocytes 
in the postnatal brain should not be treated as a homogeneous 
population of stage-specific cell population. 

Proliferating Astrocytes and Reactive Astrocytes in 
Neurological Disorders

The proliferating astrocytes in the neonatal brain seemingly 
recapture the characteristics of reactive astrocytes observed in several 
pathological conditions. First, similar to proliferating neonatal 
astrocytes, reactive astrocytes reenter the cell cycle for proliferation 
[30]. Second, proliferating reactive astrocytes show virtually no gap 
junction coupling in dye coupling analysis [30] third, only neonatal 
proliferating astrocytes predominantly express voltage-gated ion 
channels, which is consistent with the altered expression of K+ 

conductance in lesion-induced reactive astrocytes [31-33]. Voltage-
gated K+ channels have been demonstrated to play a role in cell cycle 
progression [34]. 

Nevertheless, reactive astrocytes are characterized by alteration 
of astrocyte gene expression and morphology in a context-specific 
manner through intrinsic and extrinsic cellular signaling mechanisms. 
An emerging view of astrogliosis is that different pathological 
stimuli result in a heterogeneous population of reactive astrocytes, 
which is not an all-or-none phenomenon, but rather a graded 
continuum change ranging from gene/protein expression to cellular 
morphology/function. Astrogliosis can also lead to either a gain-of-
function or loss-of-function. Thus, the characteristics of diversity 
of proliferating astrocytes may serve as an important foundation 
for further examination into the extent to which reactive astrocytes 
recapture the features of neonatal astrocytes and their pathological 
and therapeutic implications [35-37].
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