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Introduction
Uptake and efflux transporters are the major component of biological barriers to control 

plasma and tissue concentrations of multiple drugs with consequences for drug efficacy at the target 
organ. For CNS drugs, passage of the Blood-Brain Barrier (BBB) is essential. P-Glycoprotein (P-
gp) a member of the Adenosine tri phosphate Binding Cassette (ABC) super family is one efflux 
transporter in the BBB which impedes the entrance of its substrates in to the CNS. Due to its location 
at the luminal border of the BBB endothelial cells P-gp allows to prevent the entrance of substrates 
being a substrate of this efflux transporter. P-gp is known to hinder the entrance of several CNS 
active drugs such as antidepressants, antipsychotics and anti-epileptics [1-6] in humans as well as 
in rodents. These diminished drug concentrations at the target organ result in reduced treatment 
efficacy or to reach similar drug levels a higher dosing with the risk of unwanted side effects.

In mice, the expression and function of P-gp is controlled by two genes, abcb1a and abcb1b in 
contrast to only one ABCB1 gene in humans. By using in vivo models like P-gp double-knockout 
mice (abcb 1a/1b -/-) results indicate that P-gp has a strong impact on brain levels of different 
kinds of psychoactive drugs especially a number of antipsychotics and antidepressants [5,7-12]. 
An impact on pharmacokinetics has a likelihood of pharmacodynamics consequences as observed 
by differences in the drug-related behavior of P-gp deficient mice [7,9,11,12]. Knock out animals, 
however, do not reflect the clinical situation as patients with genetically caused absence of P-gp 
activity have so far not been identified. However, polymorphisms resulting in changed drug efficacy 
have been reported [13]. Moreover, evidence is lacking that drugs with an inhibitory potential on 
P-gp may give rise to clinically relevant drug-drug interactions. Up to now, it has not been reported 
if induction of gene expression of efflux transporters results in pharmacodynamics consequences 
within the CNS due to a boosted barrier function for P-gp substrates [14,15]. Enhanced expression 
might be one reason for treatment failure of antidepressant [14] or antipsychotic drugs [16-18]. 
Risperidone and its active metabolite 9-hydroxyrisperidone can be applied in mice to investigate the 
influence of P-gp expression-levels on pharmacokinetic [7,15,19] and pharmacodynamic [7] effects, 
by the impact on motor behavior of the antipsychotic.

The present study aimed to extent previous investigations on P-gp induction [15], first in respect 
to treatment duration and second to pharmacodynamic consequences. After 11 days of sub chronic 
treatment with dexamethasone and 5-pregnene-3beta-ol-20-on-16alpha-carbonitrile (PCN), brain 
and blood levels as well as Rota Rod behavior were investigated in mice after an acute risperidone 
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Abstract

Objectives: P-Glycoprotein (P-gp) an efflux transporter localized in the blood-brain barrier, influences drug 
concentrations in the brain and thereby their clinical efficacy. P-gp knockout mice differ markedly from wild 
type animals with respect to pharmacokinetics and -dynamics of P-gp substrates. Using the P-gp substrate 
risperidone as a model drug, we studied the effects of P-gp induction on drug concentrations in blood and CNS 
as well as its effects on drug related behavior. 

Methods: P-gp inducing drugs dexamethasone and 5-pregnene-3beta-ol-20-on-16alpha-carbonitrile (PCN) 
were given to FVB/N mice for 11 days. Control mice received vehicle only. On day 12, risperidone was injected 
i.p. For kinetic investigations, brain and serum levels of risperidone and 9-hydroxyrisperidone were measured 
by reversed phase-high performance liquid chromatography with spectrophotometric detection. To study 
pharmacodynamic effects, risperidone induced RotaRod behavior was analysed with Rota Rod. 

Results: Risperidone and 9-hydroxyrisperidone concentrations were decreased in the blood serum and 
brain homogenate of animals treated with dexamethasone or PCN. Baseline Rota Rod behavior was only slightly 
affected by P-gp inducing drugs. Rota Rod deficits due to risperidone were markedly reduced after induction of 
P-gp by both drugs.

Conclusion: Induction of P-gp diminishes the CNS effects of drugs characterized as substrates of P-gp. 
Therefore, it seems likely that induction of P-gp by co-medication has the potential to minimize treatment 
response and increase potential side effects of CNS drugs in a clinical respect.
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injection. The present design models there for clinical situation with 
monitoring of in vivo outcome (therapy efficacy) and furthermore 
provides more clinically relevant insights compared to the use of 
Knock Out (k.o.) models.

Methods
Drugs 

Risperidone (Risperdal®) was obtained from Janssen-Cilag GmbH 
(Neuss, Germany). PCN and corn oil (used as solvent for PCN) were 
purchased from Sigma-Aldrich (Steinheim, Germany). Physiological 
saline solution 0, 9% was received from Braun (Melsungen, 
Germany). Risperidone used for reversed phase high performance 
liquid chromatography was purchased from MP Biomedicals 
(Illkirch, France); 9-hydroxyrisperidone was kindly provided by 
Janssen-Cilag (Beerse, Belgium). Methanol (high performance 
liquid chromatography grade) and dexamethasone-21-di-sodium-
dihydrogen-phosphate (Fortecortin® injects) were provided by Merck 
(Darmstadt, Germany). Isoflurane for anaesthesia (Forene®) was 
purchased from Abbott GmbH & Co. KG (Wiesbaden, Germany).

Animals

231 male FVB/N mice (25-45 g; P-glycoprotein status (abcb1a/1b 
+/+; FVB/N background) from the animal facility of the University 
Medical Center of Mainz were used. Animals were housed in groups 
of 2-5 with free access to food and water. A 12-h light–dark cycle 
(6 am to 6 pm light on) was maintained at a temperature of 22°C 
and a relative humidity of 60%. All experiments were conducted in 
accordance to the official regulations for the care and use of laboratory 
animals and approved by local authorities.

Study design and drug administration

For kinetic investigations 156 mice were divided into 4 
groups (dexamethasone, saline control, PCN, corn oil control). 
Dexamethasone (50 mg/kg/d) and the known murine selective 
Pregnane X Receptor (PXR) activator PCN in a dose of 25 mg/kg/d 
were injected Intra Peritoneally (i.p.) for 11 days [15]. Control mice 
received vehicle only; in case of dexamethasone physiological saline, 
in case of PCN the vehicle was corn oil. The latter was required due to 
the high lipophilicity of PCN. P-gp inducing drugs were injected once 
daily at a 24 h interval. On day 12 risperidone was injected i.p. in a dose 
of 3 mg/kg [7]. 0.5, 1, 2, 3 and 6 hours after injection of risperidone, mice 
were anaesthetized and decapitated respectively (n=6-8 per group). 
Trunk blood and brain tissue samples were collected and out of it the 
levels of risperidone and its active metabolite 9-hydroxyrisperidone 
measured by high performance liquid chromatography [7]. The 
sum of risperidone and 9-hydroxyrisperidone levels was calculated 
and given as active moiety. Both mother compound and metabolite 
exhibit similar receptor profiles and therapeutic efficacy [20,21].

For pharmacodynamics analysis by RotaRod behavior a total of 
75 mice were used. Mice were placed in a neutral position on a 3 cm 
diameter cylinder turning with a speed of 5 Rounds Per Minute (rpm) 
(RotaRod Advanced, TSE Systems, Bad Homburg, Germany). After 
ten seconds speed was accelerated linearly up to 27.5 rpm within 
240 seconds and time was taken automatically until the mouse fell 
from the cylinder. Animals were trained before the start of the drug 
treatment for 5 days to achieve comparable performance. At day 6 

behavioural training continued while treatment with P-gp inducing 
drugs or respective control substances started for 11 days. On the 12th 
day mice were injected i.p. with risperidone and tested six times 0.5, 2, 
4, 6, 8, and 10 hours post injection. At the first training days without 
treatment three trials per day were performed. After starting with the 
injections, four trials per day for each mouse were conducted [22]. 
Thereby, baseline values were calculated of values each individual 
mouse achieved at days 9 to 11 (mean) on the RotaRod. This mean 
value served as an individual baseline score of the respective mouse 
(100% performance), to minimize inter-individual variation. Means 
of three consecutive trials at each time point of testing day (with 
risperidone treatment) were related to the baseline score to assess 
risperidone impact on individual behavior. In this way each mouse 
built a control to itself [7,11,12].

Statistical analysis

Statistical comparisons between groups were carried out using 
SPSS version 21.0 (SPSS GmbH Software, Munich, Germany). Either 
one or 2-way analysis of variance with post hoc t-test was used to 
assess statistical significant group differences. Differences were 
considered to be statistically significant for p values less than 0.05 
(Table 1). 

Results
To evaluate the P-gp inducing effect of dexamethasone and PCN 

brain and serum levels of the known P-gp substrate risperidone and 
its major metabolite 9-hydroxyrisperidone were used (Figure: 1 and 
2). In line with previously published data derived after 4 days of 
treatment with P-gp inducing drugs dexamethasone and PCN [15] 
mice treated for 11 days showed significantly decreased brain and 
serum risperidone levels (Figures: 1A/B and 2A/B). In some animals, 
risperidone and 9-hydroxyrisperidone brain levels were below the 
limit of quantification of the HPLC method used [7] and thus not 
detectable (Figures; 1A/C and 2A/C) (Figure 1).

In mice treated with dexamethasone serum levels given as active 
moiety of risperidone (sum of risperidone and 9-hydroxyrisperidone) 

Table 1: Calculated were ratios of levels of 9-hydroxyrisperidone 
divided by levels of risperidone in serum (A) and brain (B) for 
the different treatment conditions at various time points. Ratios 
of concentrations are an in vivo measure of 9-hydroxylation of 
risperidone.

Inducing drug 0.5h 1h 2h 3h 6h

Dexamethasone 0.62 0.68 0 0 0

Control - NaCl 8.2 6 0.5 0.37 0

PCN 3.54 1.58 0.57 0.42 0

Control - Cornoil 12.89 4.16 1.8 0.77 0.52

B

Inducing drug 0.5h 1h 2h 3h 6h

Dexamethasone 0.83 0.43 0.25 0.09 0

Control - NaCl 3.52 1.2 0.87 0.34 0.09

PCN 1.08 0.6 0.32 0.24 0.17

Control - Cornoil 2.73 1.66 0.77 0.46 0.23

A
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were significantly lower compared to NaCl injected controls at any 
time point (Figure: 1F). However, brain levels (active moiety), were 
slightly different: Within the first hour after risperidone injection 
brain levels of mice treated with dexamethasone were similar or 
higher as those of controls (Figure: 1E) whereas two and three hours 
after risperidone injection brain levels were lower than in control 
mice (Figure: 1E). Possible treatment effects on the metabolism 
of risperidone were reflected by the metabolic ratio (i.e. mother 
compound to metabolite). As the metabolic ratio is below 1.0 
whenever quantifiable (Figures 1A/C, Table 1) changes in risperidone 
metabolism by dexamethasone have to be taken into account (Figure 
2).

Brain and serum levels (active moiety) decreased significantly 
after 11 days of PCN pre- treatment at all 5 time points (Figure: 2 
E/F). Differentiating between mother compound and metabolite, 
brain and serum levels of risperidone were reduced as early at 0.5h 
after injection while 9-hydroxyrisperidone levels were decreased 
starting at 2 hours after injection (Figures: 2A-D). Effects of PCN 
treatment on risperidone metabolism were more pronounced when 
compared to those of dexamethasone treatment (Table 1).

Resulting brain risperidone levels from 11 days of either 
dexamethasone or PCN treatment were not significantly different; 

however, 9-hydroxyrisperidone brain levels were markedly increased 
in brains of dexamethasone treated mice (Figures: 1C and 2C) and to 
some extent in the serum of these animals (Figure 3).

Area Under the Data (AUD) was used to elucidate effects of 
vehicles used for the different sub chronic treatments. AUD curves 
demonstrated that corn oil compared to NaCl had an impact on 
risperidone and 9-hydroxyrisperidone serum levels and much more 
pronounced on brain-levels (Figure: 3A/B). The mother compound 
and metabolite levels were significantly increased in brain 1h after 
risperidone treatment and 11 days of corn oil application (1A/C, 
2A/C 1h to 6h).

Eleven days of dexamethasone and PCN treatment presumably 
by induction of P-gp affected risperidone-induced changes in 
RotaRod behavior (Figure: 4). In case of PCN treatment, behavioral 
performance displayed significant differences 4 hours after treatment 
and lasted up to 8 hours. The 2-way ANOVA revealed significant 
effects over time (factor A F (5; 170) =176.78, p<0.001) over treatment 
(factor B F (1; 34) =5.34 p<0.05) and for AxB interaction F (5; 170) 
=5.63 p<0.001. In the case of 11 day dexamethasone treatment 
RotaRod behavior was statistically different already half an hour 
after the injection of risperidone and lasted up to 8 hours. Statistical 
analysis revealed significant behavioral effects over time (factor A F 
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Figure 1: Concentration time profiles after induction of P-glycoprotein by 50 mg/kg/d dexamethasone for risperidone in the first row (A, B) and for its metabolite 
9-hydroxyrisperidone in the second row (C,D). Brain levels were displayed in the left column (A,C) while serum levels were shown in the right column (B,D). The 
active moiety i.e. sum of risperidone and 9-hydroxyrisperidone is shown in the third row for brain levels on the left (E) and for serum levels on the right (F). Mice 
treated with dexamethasone = black lines, and controls = grey lines.  Asterisks highlight significant differences indicated by post-hoc comparison of group means 
at various time points. Data are presented as mean +/- standard error of the mean (S.E.M).
(* p < 0.05; ** p < 0.01; *** p < 0.001)
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Figure 2: Concentration time profiles after induction of p-glycoprotein by 25 mg/kg/d PCN for risperidone in the upper row (A, B) and for its metabolite 
9-hydroxyrisperidone in the middle row (C,D). Brain levels were displayed in the left column (A,B) while serum levels were shown in the right column (B,D). The 
active moiety i.e. sum of risperidone and 9-hydroxyrisperidone is shown in the lower row for brain levels on the left (E) and for serum levels on the right (F). Mice 
treated with PCN = black lines, and controls = grey lines.  Asterisks highlight significant differences indicated by post-hoc comparison of group means at various 
time points. Data are presented as mean +/- standard error of the mean (S.E.M). 
(* p < 0.05; ** p < 0.01; *** p < 0.001) 
# in addition indicates statistical significant differences between control mice i.e. NaCl (shown in figure 1) vs. corn oil
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Figure 4: Pharmacodynamic consequences displayed by RotaRod performance after risperidone injection of mice treated either with the P-glycoprotein inducer 
dexamethasone (A) or PCN (B) Data points represent means +/- standard error of the mean values (SEM).  Asterisks (* p < 0.05) highlight significant differences 
indicated by post-hoc comparison of group means at various time points.The dark line represents valuesof inducer-treated mice compared to the respective control 
mice (grey line). 
RisSal =control condition Risperidone and saline, RisDex = Risperidoneafter  11 days of dexamethasone treatment, RisOil =control condition Risperidone and corn 
oil, RisPCN = Risperidone after  11 days of PCN treatment.

(5; 185) =115.30, p<0.001) over treatment (factor B F (1; 37) =21.39 
p<0.001) and for AxB interaction F (5; 185) =7.38 p<0.001. While 
statistical analysis revealed no effect of the solvent corn oil (factor 
A time F (5; 185) =129.14 p<0.001, factor B solvent F(1;37)=0.235 
n.s), AxB F(5;185) =0.60 n.s.), direct comparison of the two P-gp-
inducing drugs revealed stronger effects of dexamethasone than 
PCN (factor A time F(5;170)=167.52 p<0.001, factor B P-gp related 
treatment F(1;34)=4.30 p<0.05, AxB F(5;170) =5.17 p<0.001) i.e. 
risperidone affected mouse behavior to a lesser extent when they 
received dexamethasone treatment before. Statistical post-hoc results 
were displayed in figures 4A and 4B. All together the result presented 
here indicated drug-drug interactions with a clear influence on drug 
distribution and there for effectiveness of treatment exemplified by in 
vivo behavioral differences (Figure 4).

Discussion
The efflux transporter P-glycoprotein regulates at the BBB 

the efficacy of several psychotropic drugs such as antiepileptic, 
antidepressant and antipsychotic drugs [6,7,9-12,23]. P-gp mediated 
transport is subject to modulation by either inhibition or induction, 
which can affect pharmacokinetics, pharmacodynamics, efficacy or 
safety of its substrates [24]. Our animal study using risperidone as 
model substance for P-gp-substrates indicates that induction of P-gp 
affects the disposition of such drugs substantially increasing blood 
levels and decreasing brain concentrations. The supposed increase of 
P-gp expression was indicated by decreased brain levels of risperidone 
and 9-hydroxyrisperidone as a surrogate parameter [7,25]. Decreased 
brain levels after induction of P-gp were already reported [15]. 
In present investigation modulation of the BBB transporter was 
expanded to a sub chronic treatment regime. The longer treatment 
resulted in comparable effect sizes indicating no habituation but 
maybe a ceiling effect. This, however, is important in clinical settings 
when drugs are given chronically. In addition clear evidence was given 
that P-gp induction affects not only drug levels but thereby has also 
functional consequences. While the ability to balance on a rotating 
rod is decreased in P-gp k.o. mice [7], present results demonstrated 
an extenuated effect after treatment with dexamethasone or PCN. 
The effect of an improved ability to stay on the rod besides similar 
risperidone treatment as reported here is in line with the reduction 

of risperidone brain levels responsible for the motor impairment. 
Both P-glycoprotein inducers decreased brain concentrations of 
risperidone active moiety by approximately 15 percent after 11 days 
of dexamethasone, and 60 percent after PCN treatment respectively. 
Thus the results indicated that PCN had the strongest effect on brain 
levels of risperidone active moiety. This again highlights the clinical 
relevance of such mechanisms, as relevant brain levels are important 
for any antipsychotic effect. 

The influence of P-gp expression levels on risperidone and 
9-hydroxyrisperidone brain levels has been reported repeatedly in 
mice [5,7,15] and in humans in the context of P-gp polymorphisms 
[16-18,25-30]. Although in humans P-gp deficiency has not been 
reported so far, however, a recent investigation was able to demonstrate 
that polymorphisms in the human ABCB1 gene influenced the 
pharmacokinetics of risperidone and 9-hydroxyrisperidone [17]. 
This indicates that modulation of P-gp expression could affect 
clinical outcomes. The results of our in vivo investigation in mice 
supported the relationship between supposed up-regulation of P-gp 
by treatment with dexamethasone or PCN and resulting brain levels 
of P-gp substrates. The mechanism by which dexamethasone and 
PCN modulate P-gp is possibly via transcription factors regulating 
P-gp expression [31]. Expression at the blood-brain barrier is linked 
to PXR activation and species differences in substrate affinities of 
this transcription factor have been described [32,33]. PCN selectively 
activates murine PXR, whereas dexamethasone activates both murine 
and human PXR [32]. P-gp expression can also be modulated by the 
Constitutively Expressed Androstane Receptor (CAR) and receptor 
crosstalk between PXR and CAR is evidenced [34]. Both receptors act 
as heterodimers with the retinoid X receptor for example and bind 
to common response elements [34]. There are data demonstrating 
that nuclear receptor (PXR; CAR) crosstalk can lead to modulation 
of the expression of multiple cytochrome enzymes and transporter 
proteins in humans [35,36]. Dexamethasone may also influence 
gene transcription pathway through the glucocorticoids receptor. 
Pregnane X receptor also regulates the expression of the multidrug 
resistance- associated proteins isoform 2 and 3, which are two other 
important transporters at the blood-brain barrier [37,38]. It has also 
previously been shown, that the expression of the efflux transporters 
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P-glycoprotein and Breast Cancer Resistance Protein (BCRP) is partly 
mediated by glucocorticoid receptor activation of dexamethasone, 
while multidrug resistance- associated protein 2 expressions showed 
a glucocorticoid receptor independent effect [39]. Multidrug 
resistance- associated protein 2 is highly co-expressed with P-gp [38] 
and is also, like P-gp and BCRP, located at the apical membrane of the 
blood-brain barrier [40,41]. Multidrug resistance- associated protein 
2 is possibly able to take over P-gp or enhance pharmacokinetic 
effects if a substance is a substrate of both efflux transporters. Up to 
now potential drug-drug interactions by induction of P-pg or other 
transporters have so far not attracted much attention in psychiatry. 
However, evidence for clinical relevance is growing [42,43,44]. 
Which of those mechanisms is responsible in present investigation 
has to be determined in future investigations. Nevertheless, drug-
drug interaction effects demonstrated indicate the risk for diminished 
treatment response due to a lack of active compound at the target 
organ. Or the respective risk of increased unwanted effects due to 
higher dosing to achieve appropriate treatment.

Besides induction of P-gp expression effects of dexamethasone and 
PCN on drug metabolizing cyp450 enzymes must also be considered 
[45]. The present investigation also revealed an increased metabolism 
of risperidone in dexamethasone treated mice as indicated by a 
metabolic ratio (i.e. mother compound to metabolite) of below 1.0 
whenever quantifiable (Figures 1A/C, Table 1). Significantly increased 
9-hydroxyrisperidone brain levels especially after dexamethasone 
treatment (Figure 1B) indicated the impact on drug metabolizing 
enzymes as well and account for higher active moiety at early time 
points. As a result of increased metabolism in dexamethasone treated 
mice 9-hydroxyrisperidone brain levels were markedly increased 
compared to PCN treated mice. This however, might account for the 
weaker impairment of dexamethasone treated mice in the rotarod test 
at the early time point (Figure 4), an indication for a weaker impact 
of 9-hydroxyrisperidone on mouse behavior compared to risperidone 
itself. This is supported by clinical investigations reporting less 
side effects of paliperidone (9-hydroxyrisperidone) compared to 
risperidone [46].

Previous studies demonstrated that PCN and dexamethasone 
induce CYP3A isoenzymes in rodents [45,47-51]were able to show 
that both P-gp inducers have the ability to induce cyp3a11, the 
mouse equivalent of cyp3a4 which is involved in the metabolism of 
risperidone. Enhanced biotransformation by hepatic cytochrome 
enzymes can also decrease brain and serum levels of risperidone 
and 9-hydroxyrisperidone by reinforced excretion of the drugs. 
Subsequently, the results of the present study indicate a third 
contributing factor: the use of corn oil as solvent for PCN. The 
comparison of AUD values (area under the data) showed a difference 
between both control groups. Indicating particular higher brain levels 
of risperidone and 9-hydroxyrisperidone (Figure 3) an effect driven 
by a decreased elimination (Figures 1/ 2 B/D). However, one has to 
bear in mind that corn oil was given for 11 days but the last time 24h 
before the risperidone.

Conclusion
In conclusion, by using risperidone as model compound, we 

were able to show a relevant pharmacological effect of increased 
P-glycoprotein transport activity. This is clearly evidenced by the fact 
that brain and serum levels of risperidone and its active metabolite 

can be influenced by co-administered drugs. This resulted in different 
in effect sizes of the antipsychotic-treatment measured by behavioral 
impairment. Further studies are needed to clarify underlying 
mechanisms and the involvement of other transporters should also 
be considered, since the observed effects may be relevant in the clinic 
in case of treatment failure. 
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