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Introduction
Neurological and neurodegenerative diseases encompass a diverse series of diseases that 

do not only imply brain impairments, but also affect the overall well-being of the patient. These 
are characterized by progressive loss of neurons (or subsets of neurons) in the Central Nervous 
System (CNS), that go along with rapid and usually irreversible loss of crucial cognitive and motor 
functions. Most of these diseases are associated with age, as their incidence increases in the elder.

The last reports of the World Health Organization (WHO) have highlighted that there are over 
1 billion people affected by neurological disorders. Such a high incidence of these diseases in an 
increasingly aging population has raised the interest in the understanding of the importance of sex 
in the progression of these diseases and their treatment.

Brain development and adult brain structure, function, and biochemistry strongly differ by 
sex [1]. These sex differences are initiated through sex-determining genes and fetal hormonal 
programming. Such differences in the brain anatomy and genetic network of the healthy 
human brain are likely to underlie the pronounced sex differences in susceptibility, progression, 
pathological scores and severity of several diseases [1-4]. Exploring sexual dimorphisms in the brain 
is key to understand the importance of sex in the different stages of the disease and might also have 
important therapeutic implications for the treatment of many neurological and psychiatric diseases.

Sex Differences in Neurodegenerative Diseases
There is a striking sex bias in the incidence, severity, progression and outcome of several 

neurological disorders [5]. Alzheimer’s disease (AD) has a higher prevalence in women above 65 
years old (1.6-3:1 ratio compared to men), and also courses with a greater cognitive deterioration [6-
8]. However, men have a higher incidence of Parkinson’s disease (PD) (3.5:1 compared to women). 
Besides, women suffering from PD show a slower rate of decline than men do [9,10].

As for autoimmune diseases, women are also more prone to suffer from multiple sclerosis (2-
3:1 ratio compared to men), however, the progression of the disease is faster in men [11,12]. On the 
contrary, in the case of some motor neuron diseases, such as amyotrophic lateral sclerosis, men have 
a higher prevalence and show an earlier onset (1.6:1 compared to women), but women suffering 
from this disease show a worse survival than men [13,14].

Mood related disorders, such as depression or anxiety disorders, also have a higher prevalence 
in women (2:1); moreover, they show increased severity of the symptoms, and a higher incidence 
of subclinical depression [15,16]. On the other hand, men show a higher prevalence (3:1 compared 
to women) in attention deficit hyperactivity disorder, which goes along with a severe deficiency in 
motor skills and higher distractibility in boys than in girls [17-20]. They also have a higher incidence 
of schizophrenia (1.4:1) and an earlier onset of the disease as well. Men show a poor prognosis with 
severe symptoms and worse response to antipsychotic drugs than women [21-23].

Autism spectrum disorders have a higher incidence and prevalence in boys than in girls (4:1), 
however, this ratio is quite controversial, since some researchers have shown that females have less 
severe stereotyped and repetitive behaviors, which may lead to a bias in the diagnoses of this disease 
[24-26].
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Abstract

There is a clear sex bias in the incidence, prevalence and outcome of many neurodegenerative disorders. 
The high incidence of these diseases in an increasingly aging population has raised interest in understanding the 
relevance of sex in the progression of these diseases and their treatment. Important sex differences have been 
reported in autoimmune, neurodegenerative and mood related disorders. 

In this review, we take an insight in the differential evolution of some neurodegenerative diseases depending 
on the sex, highlighting the importance of gonadal hormones in this process, and the implications of a proper 
understanding of the mechanism underlying these differences for the therapeutic strategies for the prevention 
and treatment of these diseases.
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Sex dimorphism and Alzheimer’s disease (AD)

AD is a chronic neurodegenerative disease that affects around 
6% of people over 65 years of age, although there is an early-onset 
incidence of 4% to 5% of the cases. It is the cause of 60% to 70% 
of dementia cases. The symptoms range from memory decline to 
problems with language, disorientation, mood swings and loss of 
motivation among others. 

As mentioned above, there is a striking sex bias in the incidence 
and prevalence of this disease. The high incidence of AD in the global 
population has favored an extensive study of the sex differences not 
only in the incidence of the disease, but also in terms of localized 
brain changes and brain function. Recent studies show that women 
diagnosed with AD experience a faster progression of hippocampal 
atrophy than men [27], whereas men are more prone to progress to 
AD in the presence of severe peri-ventricular white matter hyper-
intensities and reduced global cognitive performance [28].

Clinical presentations also differ between men and women, 
showing men more aggressive behaviors, comorbidity, and higher 
mortality than women; while women tend to suffer from more 
affective symptoms and disability but longer survival [29].

These differences indicate that there might be an urge for different 
management strategies to treat men or women suffering from AD. 
From the perspective of treatment, emerging evidence also points 
to the possibility that sex-specific genetic and hormonal factors 
contribute to variance in clinical efficacy.

Overlooking of sex interaction in previous studies might be the 
explanation for inconsistencies in the results of the importance of 
genetic factors, such as that of the APOE-ε4 allele relevance [30]. 
Interestingly, recent studies taking sex as a factor showed that 
variants of the o-estrogen receptor α gene (ESR1) caused an improved 
response to acetyl cholinesterase inhibitor treatment in women with 
AD [31].

Therefore, specific therapies for AD patients, considering sex 
as a relevant differential factor may lead to a better outcome in the 
treatment of these patients.

Sex dimorphism in Parkinson’s disease (PD)

PD is the second most common neurodegenerative disorder, 
affecting approximately 0.3% of people in the developed world. Its 
incidence rises rapidly to 3% for individuals over the age of 65 years, 
to demonstrate that advanced age comprises a major risk factor 
[32]. PD is a movement disorder characterized by motor symptoms 
such as bradykinesia with rigidity, tremor at rest, gait disturbances 
and difficulty in swallowing and producing speech. There are also 
non-motor symptoms associated with this disease, which include 
anxiety, depression, insomnia, dementia, autonomic dysfunction 
and constipation, which can often reduce patients’ quality of life even 
more significantly than motor aspects [33].

After aging, epidemiological studies have revealed that the male 
sex is a prominent risk factor for developing PD at all ages, for all 
nationalities studied. Studies on sex hormones being critical drivers 
of sex differences in disease susceptibility are especially focused 
in the effects of 17β-estradiol (E2), the most abundant estrogen in 
non-pregnant mammals, which is widely recognized to have neuro 

protective actions and, therefore, may confer the advantage in 
diseases where women generally fare better, such as PD [34]. Indeed, 
women who underwent bilateral ovariectomy before menopause 
have an increased risk of developing PD [35].

Compelling evidence suggests that biological sex differences in 
the neurosteroidogenic path way may underlie some differences in 
vulnerability, in PD experimental models. It could also account for 
the sexually dimorphic actions of estradiol, which protects females 
against striatal DA loss in experimental PD, but fails to protect, and 
may even worsen, striatal lesions in males. 

Current dopamine replacement strategies ameliorate the 
symptoms of PD, both in men and women, however, these findings 
highlight the need for sex-specific treatments, which demands a better 
understanding of sex dimorphisms. They also open up the potential 
to exploit hormone-based therapies as a novel approach to develop 
new treatments, which could delay the progression of the disease. 
However, this will require further research on how the endogenous 
hormonal milieu interacts with other sex-specific factors that are also 
important for the evolution of PD [32,36,37].

Sex dimorphism and stroke

There are clinically well-recognized sex differences in ischemic 
stroke. Even though the overall incidence of stroke is higher in men 
than in women, up to the age of 80 years, when stroke incidence 
increases dramatically in women, women account for 60.6% of stroke 
deaths [38]. Besides, the incidence of recurrent stroke is higher in 
women both at younger and older ages.

Sex differences in stroke are most likely due to a multitude 
of interacting factors, some of which are often not considered in 
large epidemiological databases. For instance, women have higher 
incidence of some risk factors such as central adiposity, endogenous 
sex hormones and psychological factors (depression) than men [39]. 
Many of the deleterious effects of aging on stroke outcome in females 
can be replicated in experimental models by ovariectomy, suggesting 
a key role of female gonadal hormones in the incidence of this disease. 

Importance of gonadal hormones

Estrogen and testosterone are the major sex hormones in humans. 
These hormones bind to specific steroid hormone receptors, which 
comprise a wide range of locations in the cell: nuclear, cytosolic and 
in the cell surface (G protein-coupled receptors and ion channels). 
Depending on their location and downstream gene activation, sex 
hormones trigger long-term or short-term effects in the cells.

Prenatally or in early postnatal life, when there is a peak in the 
testosterone levels in males, these hormones exert organizational 
effects, which are permanent and independent of acute circulating 
hormone levels [40,41]. During development, after testicular 
differentiation in males, Leydig cells start producing testosterone, 
which is then transformed by the neuronal aromatase to 17β-estradiol. 
This estrogen exerts masculinizing actions through estrogen receptors. 
Besides this endogenous synthesis of estrogens in the male brain, 
both male and female brains are exposed to high levels of estrogens 
produced by the placenta and the mother.  However, the differential 
organization of the female brain occurs due to the presence of alpha-
fetoprotein in the plasma, which binds circulating estrogens, and 
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prevents estrogen binding to the cells, hence protecting the female 
brain from the masculinizing effects of estrogens [42,43].

Later in life, estrogen and testosterone have activation effects, 
which are dependent on the continued production of gonadal 
hormones and disappear whenever gonadal function is compromised 
[41].

Normally, activational effects are constrained by earlier 
organizational effects. However, there are interactions between 
organizational and activational effects of gonadal hormones. Indeed, 
the same hormone at different time points in development leads first 
to brain programming early in life, and later can directly activate 
those traits. Both, organizational and activational effects of gonadal 
steroid hormones have been shown to be implicated in the increased 
risk of affective disorders in women.

There has been an extensive interest in understanding the 
interactions of sex chromosomes and gonadal hormones in the 
regulatory and inductive mechanisms of neurodegenerative disorders, 
focusing on the autoimmune component of these diseases [44,45]. 
Some authors have tried to link these sex differences in the disease 
prevalence and resistance to the differential immune responses of 
males and females. Generally, females exhibit enhanced immune 
responses than males, and they also present increased resistance to 
some diseases and infections. Beneficial as it might seem, this efficient 
peripheral immune response may also favor the development of 
autoimmune diseases [46,47].

Neuroinflammatory processes, such as overproduction of pro-
inflammatory cytokines, contribute to the pathogenesis, clinical onset 
and progression of several neurological diseases. Indeed, inflammatory 
mediators are synthetized at the sites of neurodegeneration in stroke 
[48,49], multiple sclerosis [50,51], amyotrophic lateral sclerosis [52], 
AD [53,54] and PD [55]. Notably, inhibition of neuroinflammation 
(either mediated by steroids or non-steroidal drugs) goes along with 
less neurodegeneration [56,57]. 

Sex steroids, principally 17β-estradiol, influence the immune 
function and inflammatory processes in the brain [58,59]. Indeed, 
estrogens decrease the activation of the neuroinflammatory cascade 
at the cellular level and further inhibit the release of molecular factors, 
blocking two essential events in the maintenance and progression of 
the inflammatory response [60,61]. The anti-inflammatory action 
of estrogens may represent an important mechanism underlying 
the neuroprotective effects exerted by these hormones in several 
neurological diseases. Moreover, this hormonal factor has been 
postulated as a plausible candidate to explain the sexual dimorphism 
in the CNS disorders that course with neuro inflammation [62-65]. 

Consequently, research of sex differences in these diseases has 
been focused on the direct and indirect immunomodulatory actions 
of sex steroid hormones [66-69]. Low doses of exogenous estradiol 
exert immune enhancing effect on humoral immunity; however, 
high doses suppress cell-mediated immunity [70-72]. Exogenous 
testosterone, on the other hand, has a depressor effect on both 
humoral and cell-mediated immunity, increasing susceptibility to 
infection [73-75].

As we have previously mentioned, there is a widespread location 
of sex hormone receptors, in the cells, but there is also a differential 
overall brain expression of steroid receptors, which has been 

well described in all prenatal, postnatal and adult brains [76-78]. 
Therefore, any sex-specific variations in the expression of gonadal 
hormone receptors might contribute to the susceptibility to maternal 
or fetal sex-steroid hormone levels, and the risk to the development 
of neurological diseases through life.

Genetics and sex dimorphism

We cannot obviate the genetic component of some of these 
neurodegenerative disorders. Notably, certain genetic mutations 
might partially explain the sexually dimorphic incidence associated 
with some of these diseases, while not others. 

As we have mentioned above, autism spectrum disorders have a 
higher prevalence in male. Recent research has shown that females 
have a higher threshold for developing autism, this is, and they need 
a higher mutational load than their male counterparts to have the 
same level of affection by the disease [79]. A plausible explanation is 
that some autism spectrum disorders forms are an X-linked disorders 
and females may be protected due to a normal copy of the mutated 
gene in the second X-chromosome. One autism-related gene located 
in the X- chromosome is FMR1. The encoded protein is implicated 
in synaptic plasticity, therefore, malfunction of this protein leads to 
functional impairments in the brain [80].

Heritable forms of A Dare also related to gene mutations. 
Mutations in APP, PSEN1 and PSEN2 genes have been shown to be 
the cause of heritable early-onset Alzheimer’s disease [81]. Mutations 
in the apolipoprotein A (APOE e4) gene, in chromosome 19, or some 
TREM2 gene variants, in chromosome 6, have been shown to be risk 
factors to develop late-onset disease [82,83]. However, the role of 
genetic mutation in sex differences in the pathology or incidence of 
the disease remains to be clarified.

There are also some genetic contributors to PD, such as 
mutations on Leucine-Rich Repeat Kinase 2 (LRRK2, also known as 
dardarin), alpha-synuclein clumping (SNCA), Glucocerebrosidase 
(GBA) and Parkin (implicated in protein degradation), or DJ-1 and 
PTEN-induced putative kinase 1 (PINK1) in the mitochondria genes 
(implicated in responses to oxidative stress) [84-86].

However, the incidence of the heritable forms of these diseases 
is very low, compared to the overall incidence of the disease (from 
1-8% of the total patients). The etiology of sporadic forms of 
neurodegenerative disorders is multifactorial, and might involve 
genetic, environmental, sex factors and others.

Other risk factors

In addition to genetic or brain-based vulnerabilities, broader 
societal factors also have roles in the risk, progression, and outcome 
of neurodegenerative disorders. This risk has been extensively 
highlighted in the case of dementias. Education and occupation levels 
have also repeatedly been shown to affect the risk of dementia and 
for which substantial inequalities have existed between the sexes in 
previous generations [87]. 

Behavioral uses and life-style also affect the incidence of 
neurodegenerative disorders. Interestingly, sex differences in life-
style may contribute to the sex differences seen in AD and PD, which 
could interact with a genetic predisposition [65,88], supporting the 
multiple hit hypothesis for developing PD [89].
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Recent studies show that a healthier diet and regular exercise 
are linked with a delayed onset and milder symptomatology of some 
neurodegenerative diseases. On the other hand, so called “bad habits”, 
such as smoking and alcohol use, which also affect vascularity of the 
individuals, are risk factors for the aggressiveness of these disorders 
[90,91]. 

Conclusion
Clinical and pre-clinical studies demonstrate robust differences 

in male and female brain in both physiological and pathological 
conditions. The aim of this review is to point out that normal sex 
dimorphism in the brain might be key to understand the different 
incidence and outcome of several CNS-related diseases. Further 
research is required to understand and elucidate the mechanisms 
regulating sex-driven differences. However, better understanding 
of the biology underlying sex differences in the healthy and diseased 
brain will enable improved therapeutic strategies for the prevention 
and treatment of sex-biased neurological diseases. 
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