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Introduction
Diabetes mellitus is a chronic metabolic disorder affecting millions of people worldwide. It is 

usually a consequence arising from environmental or genetic factors resulting in elevated blood 
glucose levels. It is generally categorized into two types. Type-1 or Juvenile Onset Diabetes mellitus 
is more common in young individuals and results due to failure of islets to secrete insulin and 
is mostly corrected by daily insulin injections. Insulin is an endocrine hormone released by the 
beta cells from Islets of Langerhans. Type-2 diabetes is more prevalent owing to lifestyle changes 
in developing countries, environmental factors and genetic conditions. There are several oral anti-
diabetic medications available to treat type-2 diabetes. However over a period of time type-2 diabetic 
patients also will become dependent on insulin injections to control their blood glucose levels. It is 
estimated that more than 29 million people in United States are suffering from diabetes [1]. It is 
also further estimated that type-1 diabetes accounts for about approximately 10% of all diabetic 
cases worldwide [2]. Although diabetes can be managed by administering daily insulin injections, 
insulin does not cure the disease. The proper administration of insulin to patients can only help 
in decreasing the onset of developing other complications of diabetes like cardiovascular diseases, 
retinopathy, neuropathy, kidney problems, foot damage, Alzheimer’s disease etc. Since insulin has 
to be administered through injections once or twice daily, patients may not be as compliant with 
insulin administrations as required. Also, managing the disease of diabetes requires making sure that 
there is a balance between the concentrations of insulin and glucose in the body. If the concentration 
of insulin is more (which can also happen due to improper insulin administration) it can lead to 
hypoglycemia that can be critical to the life of the patient if not managed properly. Similarly, if 
the concentration of insulin is low it leads to hyperglycemia, which is also not beneficial for the 
patient. Further in certain type-1 diabetic patients a condition called “Brittle Type-1 Diabetes” is 
developed. In this condition, patients show sudden episodes of hyperglycemia followed by severe 
hypoglycemia. This can further lead to convulsions, coma and death [2,3]. Also, recent projections 
from the Center for Disease Control (CDC) indicate that if current trends continue, there will be 
approximately four -fold increases in prevalence of diagnosed type II diabetes [1]. It is also estimated 
that almost half of adults with type-2 diabetes aren’t able to control their blood sugar (glucose) 
numbers with their current oral diabetes medication. Hence, alternate strategies like whole pancreas 
transplantation, islet transplantation with novel gene therapy strategies have long been suggested as 
a possible alternative or cure for diabetes. 

Islet Transplantation
Human islet transplantation has the required potential to replace the islets in patient and 

make him/her insulin independent [4,5]. Whole pancreas transplant which has similar successes 
as islet transplantation, it is not recommended due to high morbidity and mortality rates except 
in patients who require kidney transplant [6-8]. However, a single patient generally requires islets 
from 3-4 cadaveric donors in order to become insulin independent or attain normal insulin-glucose 
homeostasis. Also, administering immunosuppressive agents, which have their own side effects, is 
a limitation for islet transplantation [8]. The critical challenge here is to improve the survival and 
functionality of islets for a longer period of time. Scientists in Canada have developed the Edmonton 
protocol where the transplantation of islets to a type I diabetic patients have become successful 
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Abstract

Type-1 Diabetes mellitus is an autoimmune disorder that comprises around 10% of the current diabetic 
population. The only mode of therapy for type-1 diabetes is to administer insulin. However, it is becoming 
very challenging to control the homeostasis between insulin and glucose levels. Islets transplantation has the 
potential to become a cure for diabetes. However, primary non-function of the islet graft immediately following 
transplantation due to apoptosis triggered by hypoxia and pro-inflammatory cytokines is one of the major 
obstacles for the success of islet transplantation. Gene therapy can be beneficial for improving the outcomes 
of islet transplantation. This review summarizes the challenges facing islet transplantation and the various viral 
vectors that can be used to possibly overcome those challenges.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Citation: Panakanti R. Diabetes Mellitus-Islet Transplantation & Gene Therapy. 
SM J Pharmac Ther. 2017; 3(1): 1016.

Page 2/4

Gr   upSM Copyright  Panakanti R

and the patients were insulin independent one year following islet 
transplantation [5]. Based on the report of Collaborative Islet 
Transplant Registry (CITR), that patient having islet transplants 
between the years of 2007-2010 had an insulin independence rate of 
50% three years after transplant [9,10]. It is been estimated that more 
than 1500 patients have been treated with islet transplantation so far 
and it can be considered as a viable treatment option for selective 
patients of diabetes [11]. However, there are few shortcomings with 
these therapies in that this treatment option is for selective patients 
who have sudden episodes of hyperglycemia, severe hypoglycemia or 
glycaemic liability [11]. Also, Islet transplantation is generally preferred 
for patients who are not responding to conventional therapies and it 
requires lifelong administration of immunosuppressive agents [12]. 
Another challenge for islet transplantation to establish as a treatment 
is the lack of abundant supply of pancreases from cadaveric donors.

Gene Therapy -Viral Vectors
Gene therapy for diabetes mellitus had made tremendous 

progress since its inception. Some of the factors that result in primary 
non-function of islet grafts include immune mediated destruction 
of islets, apoptosis, and lack of revascularization [13]. Gene therapy 
strategies can be used to improve the survival and function of islets 
following transplantation [14,15]. Islets have a good network of 
blood vessels intertwined within them. This network of blood vessels 
is damaged during the isolation and purification of islets rendering 
them devoid of crucial oxygen and blood supply necessary for them 
to survive and function [16-18]. Also, it has been well reported 
that islets do not secrete insulin upon transplantation owing to 
their destruction by apoptosis mediated by inflammatory cytokines 
[19]. Therefore gene therapy approaches are focused more in the 
promoting revascularization and protecting the islets from apoptosis 
immediately after transplantation [20]. Gene therapy was initiated as 
a productive means to transfer of genes to human cells to treat various 
metabolic disorders, viral infections, autoimmune diseases etc [21]. 
Generally, viral vectors are more efficient in gene transfer when 
compared with non-viral vectors. Non-viral vectors are much safer 
compared to viral vectors. However, with the advent of replication 
deficient adenoviral vectors that can provide stable and transient 
expression of the genes, the safety profile of the viral vectors has been 
enhanced. Also, ex-vivo gene transfer is slowly beginning to become 
more significant in enhancing the outcome of islet transplantation 
[14,15,22-25].

Adenoviral Vectors (Adv), Adeno-Associated Viral (AAV) 
vectors, retro viral vectors, lentiviral vectors and Herpes Simplex 
Viral (HSV) vectors are the various types of viral vectors that can be 
employed for gene therapy [20]. Herpes Simplex Virus vectors owing 
to their showing only transient gene expression and their ability to 
elicit antiviral responses from HSV infected cells are not much used 
in ex-vivo transfer of genes to islets [20]. HSV vectors are used for 
gene transfer of genes such as TNF-α soluble receptor, interleukin-10 
etc. for alleviating pain associated with diabetic neuropathy [26-
29]. Retroviral vectors can provide constant expression of desired 
transgene as it can integrate into the host genome. However, it is not 
suitable for transduction of islets as retroviral vectors are not capable 
of transducing non-dividing cells [30]. Lentiviral vectors are modified 
retroviral vectors and they have the ability to transduce islet cells as 
they are capable of transducing both dividing and non-dividing cells 

[31]. Leibowitz et al [32] in their study have shown that retroviral 
vectors were very ineffective in transducing islets, whereas lentiviral 
vectors were marginally effective. They also concluded in their study 
that of all the vectors they had tested adenoviral vectors showed the 
best transduction efficiency in islets and were very potent for transient 
gene expression. Jimenez-Moreno et al have recently developed a 
stable protocol for transducing islets with lentiviral vectors which 
can lead to around 80% transduction efficiency and preserving the 
metabolic function of the islets [33]. Lentiviral vectors have also 
been used to alleviate diabetes by expression of insulin in the liver of 
diabetic rats [34]. However, there is still a long way to go to ascertain 
that these vectors can be useful for islet transplantation.

AAV are relatively small with a DNA genome of 5000 bp and need 
a helper virus such as an adenovirus or herpes virus for transducing 
cells [35]. Adeno associated virus vectors capable of transducing 
both dividing and non-dividing cells. AAV are able to transduce the 
islets by binding to heparin sulfate proteoglycan receptors [36] and 
co-receptors αvβ5 integrin heterodimers, fibroblast growth factor 
receptor type-1 and hepatocyte growth factor (c-met) [37-40]. There 
have been many studies using AAV vectors to express genes such as 
IL-2, IL-4, IL-10, TGF-β1 [41-44] etc. and other therapeutic strategies 
[45-47] showed beneficial effect in the therapy of diabetes. It has 
been more than 50 years since the AAV vectors have been discovered 
and there are now close to 183 gene therapy clinical trials associated 
with AAV [48,49]. The major obstacles with the use of AAV are 
its small packaging capacity [48] which can be enlarged by using a 
smaller sized promoter with same efficiency [50] and newer vectors 
are being developed which can incorporate large transgenes [51]. The 
other drawback for the use of AAV vectors for gene therapy was lack 
of production of high viral titer which has now been solved and a 
number of protocols have been developed and published outlining the 
processes to get high yield of pure AAV vectors that are suitable for 
clinical trials [52]. The success of AAV vectors depend on improving 
the vector to avoid attacks by neutralizing antibodies, enhance its 
delivery and becoming less immunogenic which is also applicable for 
all viral vectors.

Adenoviral vectors are double stranded DNA vectors and can 
infect both dividing and non-dividing cells [30]. However, they do not 
integrate in the host genome which can be a drawback with retroviral 
and lentiviral vectors. They show only transient gene expression and 
can be considered as potent vector for ex-vivo gene transfer. They are 
capable of incorporating long genomes. Because of these properties, 
around 535 (21.2%) clinical trials that are currently active are based 
on adenoviral vectors [49]. It is interesting to note that the number 
of clinical trials involving adenoviral vectors has even surpassed 
that of clinical trials involving retroviral vectors. Adenoviruses are 
known to cause respiratory problems in humans. Most humans 
seem to have antibodies for adenoviruses which can neutralize the 
adenoviral vectors. This may be one of the major reasons for transient 
expression of these vectors. Also, to minimize immunogenicity the 
E1, E3 genes of the adenoviral vector genome are deleted [14,15]. 
By further deleting E4 gene or a part of the E4 gene of the Adv-
vector most of the immune response can be minimized. We have 
shown that by using a bipartite adenoviral vector expressing genes 
Human Vascular Endothelial Growth Factor (hVEGF) / Human 
Hepatocyte Growth Factor (hHGF) for promoting revascularization 
of islets and human interleukin 1-receptor antagonist for protecting 
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islets from apoptosis can be beneficial in improving the outcomes of 
islet transplantation [14,15]. The islets transduced with adenoviral 
vectors Adv-hVEGF- hIL-1Ra or Adv-hHGF- hIL-1Ra when 
transplanted in streptozocin induced diabetic Non Obese Diabetic-
Severe Combined Immunodeficient (NOD-SCID) mice, showed 
better control in decreasing the blood glucose levels for a longer 
period of time compared to islets transduced with Adv-Laczor non-
transduced islets. There have been many studies focusing on using 
adenoviral vectors to improve the survival and function of islets 
following transplantation [53-58]. Human Bone Marrow Derived 
Mesenchymal Stem Cells (hBMSCs) have been used as gene carriers 
and were contransplanted with human islets transduced with Adv-
hVEGF- hIL-1Ra. This improved the glycemic control in diabetic 
mice [23,25]. Li R et al have used helper dependent adenoviral vectors 
to express neurogenin 3, betacellulin and Suppressor of Cytokine 
Signaling 1 (SOCS1) to promote in vivo islet neogenesis in diabetic 
Non-Obese Diabetic (NOD) mice. Their results showed that about 
50% of the diabetic mice attained normal blood glucose levels for over 
4 months [59]. The major obstacle for the adenoviral vectors to be 
successful is them being immunogenic. Even after deletion of E1, E3 
and even E4 regions of the Adv, there is still some expression of viral 
genes. This ultimately leads to the Adv being active for 1-2 weeks. 
One way to circumvent this problem is the development of gutless 
Adv which can replicate only with the help of helper virus. This can 
enhance the expression of Adv for a long time. However, transient 
expression of Adv. can be beneficial for ex-vivo gene transfer to islets, 
because once the primary graft is able to survive and function in the 
initial few days after transplantation; it may be able to get aligned in 
the host.

Conclusion
Islet transplantation is a viable alternative for the possible cure 

of diabetes. However, it has to overcome the challenges of use of 
immunosuppressive agents, non-function of islets due to immune 
or inflammatory cytokine mediate apoptosis. Gene therapy can be 
helpful in improving the outcomes of islet transplantation. It can 
protect the islets by promoting revascularization and protecting them 
from apoptosis through expression of transgenes. Scientists are even 
trying to increase the mass of beta cells by proliferation beta cells, 
convert stem cells into insulin producing cells through the processes 
of gene therapy [60-62]. But again the positive outcome of gene 
therapy of islet transplantation depends on properly controlling the 
delivery of the vectors and preventing host immune responses. 
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