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Introduction
Viruses can only reproduce by infecting live cells. During their replication, some viruses 

manipulate the host cell machinery in such a way that may cause the host cell to reproduce out 
of control and become carcinogenesis. These viruses are known as oncogenic viruses, also named 
as “tumor viruses” or “cancer viruses”. In 1909, Francis Peyton Rous showed that cancer could be 
transmitted through cell-free tumor extracts and thus viruses must be responsible for transmitting 
the tumor [1,2]. A new epoch began after that, the first human tumor virus Epstein-Barr virus 
(EBV) was identified from Burkitt’s lymphoma in 1964 [3]. Currently, more than eight human 
tumor viruses are known. Human oncogenic viruses are classified into two categories according 
to their genomes, DNA viruses and RNA viruses. Most human tumor viruses belong to DNA 
viruses, including Epstein - Barr virus (EBV), Human Herpes Virus (HHV4), Hepatitis B Virus 
(HBV), Human Papilloma Viruses (HPV), Kaposi’s Sarcoma Herpes Virus (KSHV), and Merkel 
cell polyomavirus (MCV).  Human T-Lymphotropic Virus-I (HTLV-I) and Hepatitis C Virus 
(HCV) belong to human RNA tumor viruses (Table 1). Similarly, there are also some important 
animal oncogenic viruses that greatly affect the development of the livestock industry. For examples, 
Marek’s Disease Virus (MDV) and Jaagsiekte Sheep Retrovirus (JSRV) can induce serious T cell 
lymphoma in chicken and lung cancer in sheep, respectively.

Since viruses cannot replicate independently, they have to exploit the host cell machinery to 
make new progeny. In order to produce a conducive environment, they take advantages of cellular 
signaling pathways by activating growth promoting pathways such as Jak-STAT, MAPK pathway 
and inhibiting growth suppression pathways, such as the DNA damage response. In addition, viruses 
also need to take measures to evade immune surveillance and utilize inflammation properly. DNA 
damage and misreplication cannot be fixed immediately due to inappropriate DNA repair system, 
resulting in tumor induction. In this way, tumorigenesis can be considered to be a by-product of 
virus replication. However, the mechanisms of oncogenic virus-induced tumors are diverse. Some 
viruses encode oncoproteins, which can mutate pro-oncogene or repress anti-oncoproteins, such 
as p53 and caspases. HBV and HCV induce chronic infection and inflammation and subsequently 
contribute to tumorigenesis. Besides, some DNA viruses cause cancers during their latent infection; 
this may be related to reduce immune responses [4]. This review will discuss four major pathways 
that are frequently regulated by tumor viruses during their infection, and suggest the possible 
relationships between oncogenic viruses and host cell signaling molecules. 

DNA Damage Response and p53 Pathway
DNA Damage Response (DDR) acts as a surveillance mechanism during cell replication 

in detecting damaged DNA, initiating DNA repair, apoptosis and senescence depending on the 
strength and duration of the damage signals. DDR and repair pathways are controlled by the Ataxia-
Telangiectasia Mutated (ATM) and RAD3-related (ATR), and DNA-dependent Protein Kinase 
(DNA-PK) [5]. ATM and ATR kinases are activated by DNA Double-Stranded Breaks (DSBs) 
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and DNA Single Strand Breaks (SSBs) respectively, subsequently 
initiate the activation of multiple downstream effectors, including 
Chk2, Chk1, p53, and γH2AX that lead to DNA repair, apoptosis or 
senescence [6]. DNA-PK is able to recognize DSBs and initiate Non-
Homologous End Joining Repair (NHEJ) [7].

Viruses induce DDR through two different mechanisms: 1) 
activation of cellular oncogenes or 2) inappropriate expression of 
viral oncoproteins [8]. Most viruses infect and drive cells from the 
G0 phase to re-enter into the cell cycle to promote an environment 
conducive for viral replication. Due to frequent replication, DDR 
occurs along with accumulated replicative stress. Thus, all known 
human oncogenic viruses can induce DDR. For some DNA viruses, 
DDR may be beneficial in their lytic infection phase. For example, 
in EBV-infected nasopharyngeal epithelial cells, induction of lytic 
infection of EBV triggers ATM activation and localization of DDR 
proteins at the viral replication compartments, whereas suppression 
of ATM activity significantly suppressed replication of EBV DNA 
and production of infectious virions [9]. DDR induced apoptosis may 
help virions to release from infected cells. Similarly, a recent study 
showed that KSHV activates ATM and H2AX for the establishment 
and maintenance of its latency during de novo infection of primary 
endothelial cells [10]. HPV encoded oncoproteins E6 and E7 can also 
independently induce ATM or ATR pathways [11] and then increase 
the frequency of foreign DNA integration into the host genome [12]. 
High-risk E7 has been shown to activate the ATM and its downstream 
target Chk2 in undifferentiated and differentiated keratinocytes [13]. 
Since triggering this pathway suppresses tumor formation in some 
ways, DDR can be considered as a self-defense mechanism of host 
cells. In this case, tumor viruses have also evolved strategies to impair 
DDR in order to survive, such as abnormal expression of certain 
viral oncoproteins to antagonize the function of DDR downstream 
signaling components, or to target upstream checkpoint kinases.

Although the tumor suppressor p53 can be induced by various 
DNA damage, the proteasomal degradation and cytoplasmic 
sequestration of p53 can be also regulated by various viral proteins 
[14]. The latent oncoprotein EBNA3C of EBV has also been shown 
to attenuate the EBV-induced DDR through modulating p53 and 
Chk2 activities [15-17]. Similarly, KSHV encoded latent protein 
LANA can also directly associate with p53 to suppress its apoptotic 
activity [18,19]. HPV encoded E6 has been shown to bind p53 
and stimulate ubiquitin-dependent degradation of p53 [20,21]. A 
recent study also suggests that β-HPV E6 proteins can attenuate 
p53 stability in response to aberrant mitosis and dysregulated 
centrosome duplication, resulting in an unstable genome condition 
and thereby promoting tumorigenesis [22]. HBV oncoproteins HBx 
can antagonise p53 function through binding to the p53 c-terminus 
to block its transactivation activity and sequestering p53 in the 
cytoplasm to suppress apoptosis [23-25]. For RNA viruses, HTLV-
1 oncoprotein Tax induces p53 dysfunction through both NF-κB-
dependent and -independent pathways [26-29].

p53 is an important tumor suppressor that guards against 
cellular DNA damage and transformation [29]. It has been termed 
“the guardian of genome integrity”. There are multiple downstream 
targets of p53 that function in cell senescence, cell cycle arrest and 
apoptosis, such as p21, PUMA and NOXA [30,31]. And the depletion 
or inactivation of p53 by virus proteins leads to an accumulation 
of point mutations, genomic instability and DNA damage. As 

mentioned above, some of virus-encoded proteins can suppress 
p53 as a downstream target of DDR.  The EBV-encoded EBNA3C is 
involved in transcriptional regulation and disruption of the cell cycle 
at the G1/S transition via direct interaction with p53 or via a p53-
mediated pathway [32].

Kinase Signaling Pathways (PI3K/Akt pathway, ERK/
MAPK pathway etc)
PI3K/Akt pathway

Phosphatidylinositol 3-kinase (PI3K)/Akt is an important 
intracellular signaling pathway, which responds to a wide range of 
stimuli such as growth factors, cytokines, nutrients, and hormones. 
These stimuli can play a significant role in cell survival, cell proliferation 
and cell motility [30-32]. PI3K has various downstream targets, 
including protein kinase B (PKB/c-Akt), Tec kinases, protein kinase 
C (PKC) isoforms, and Guanine Nucleotide Exchange Factors (GEFs) 
[33]. Among those downstream targets of PI3K, the recent focus has 
been on PKB/c-Akt because of its anti-apoptotic activity, which might 
be linked to oncogenic virus replication and tumorigenesis (Figure 
1). The PI3K/Akt pathway is activated in HTLV-I-transformed 
cells, and its activation has been linked to apoptotic resistance [34-
36]. Inhibition of Akt in HTLV-I-transformed cells down-regulates 
phosphorylation of Bad, which activates caspase-9 leading to 
apoptosis [37]. The PI3K pathway is also found to reduce telomerase 
activity in HTLV-I cells by decreasing cytoplasmic retention of the 
Wilms Tumor (WTI) protein, which strongly suppresses the hTERT 
promoter [38]. Another RNA oncogenic virus, HCV, can cause 
persistent infection in patients eventually progressing to tumors. 
It has been shown that NS5A, the core protein of HCV, activates 
PI3K by directly binding to its regulatory subunit p85, which 
results in enhanced Akt activity [39,40]. Akt phosphorylates NS5A 
in vitro, while NS5A phosphorylation has been shown to inversely 
correlate with HCV RNA replication [41-43]. These data suggest 
that activation of PI3K/Akt pathway by HCV not only protects cells 
against apoptosis but also contributes to the maintenance of steady-
state levels of HCV replication. These effects may contribute to the 
establishment of persistent infection by HCV [44].

It was found that apoptosis of hepatocytes might be suppressed by 
Akt activation in HBV infected cells [45,46]. However, HBV encoded 
multifunctional protein HBx has also been shown to activates Akt 
to decrease overall levels of HBV replication through transcription 
factor hepatocyte nuclear factor 4α (HNF4α) in an ex vivo model of 
cultured primary hepatocytes. A number of studies showed that HBx 
is a multifunctional protein which is required for HBV replication 
in multiple experimental systems, including cultured primary rat 
and human hepatocytes, liver cells lines, as well as in vivo in livers 
of normal mice and chimeric mice with humanized livers [47-52]. 
Thus, we speculate that HBx can play a fine-tuning role in the balance 
between HBV replication and hepatocyte survival.

Recent studies showed that DNA oncogenic virus HPV-16 E6 
and E7 oncoproteins promote the activation of Akt, mTOR, JNK, 
and c-Jun in non-small cell lung cancer cells [53]. In addition, 
the PI3K/Akt pathway is also activated and has the potential to 
enhance oncogenic transformation and cancer development. The 
activated stromal Akt can induce tumorigenesis and invasion 
through regulating Keratinocyte Growth Factor (KGF) levels in 



Citation: Ming X, Jung YS, Babiuk LA and Qian Y. The Host Signaling Pathways 
Hijacked by Oncogenic Viruses. SM Vaccine Vaccin. 2017; 3(1): 1020.

Page 3/9

Gr   upSM Copyright  Qian Y

HPV16 positive keratinocytes expressing E6 and E7 [54]. EBV 
encoded LMP1 and LMP2A can also activate the PI3K/Akt pathway, 
resulting in modulation of cell survival, apoptosis, proliferation and 
genomic stability via its downstream target proteins to cause cancer 
[55-58]. Moreover, JSRV Env protein upregulates Akt causing cell 
transformation by both PI3K-dependent and -independent pathways 
[59].

MAPK pathways

The Mitogen-Activated Protein Kinase (MAPK) pathways 
involve a core cascade of events in which an upstream MAPK 
Kinase Kinase (MAPKKK) is activated by extracellular stimuli or 
intracellular effector molecules, such as growth factors, cytokines and 
stress signals, subsequently phosphorylating MAPKK and eventually 
activating MAPK [60]. The MAPK family includes the ERK1/2, p38 
and JNK, which play an important role in regulating cell proliferation, 
differentiation, apoptosis and immune responses [61-64] (Figure 1). 

Among these, the MEK-ERK and JNK pathway are capable of 
stimulating cell growth and differentiation. These pathways can 
be utilized by viruses to aid their replication. Indeed, HBx protein 
promotes cell proliferation and rapid progression through the 
cell cycle by up-regulation of AP-1 and cyclin D1 via activation 
of the MEK/ERK and PI3K/Akt signaling pathways [65,66]. JNK 
and p38 pathways can induce host innate antiviral responses and 
oncogene-mediated transformation.LMP1 expression is associated 
with activation of a number of MAPKs, including JNK, AP-1, and 
p38, which might be responsible for IL-6, -8 expressions [61,67]. 
In addition, MAPK pathways play a key role in regulating the life 
cycle of KSHV. During early infection, KSHV induces the ERK1/2, 
JNK and p38 to facilitate its entry into the cells and modulate the 
initiation of viral gene expression [68,69]. During latent infection 
of KSHV, ERK1/2, JNK and p38 are required for the activation of 
lytic replication [69]. However, HCV encoded NS5A inhibits the 
activity of the mitogenic- and stress-activated transcription factor 
AP-1 through the Ras-ERK signaling, resulting in a slow-transition 
of infected hepatocytes from the G1 phase to S phase cell cycle [70].

The Ras-MEK-ERK pathway has also been shown to play critical 
roles in anti-apoptosis and transformation. For example, Ras-ERK 
signaling is relevant to protect cells against Tax-induced apoptosis 
protection and to enhance P-CREB levels, implying a potential 
role for Ras in HTLV-I-induced diseases [71]. Maeda et al. showed 
that selective inhibition of MEK1 and Ras can specifically prevent 
JSRV Env-induced transformation of NIH 3T3 and RK3E rat cells, 
indicating that the Ras-Raf-MEK-ERK pathway might be involved in 
JSRV Env-mediated transformation [72]. However, how JSRV Env 
proteins activate this pathway and why ERK phosphorylation is not 
detected in Env-transformed cells remain unclear.

Jak-STAT pathway

The Jak/STAT pathway consists of three main components: a 
receptor, Janus Kinase (Jak), and Signal Transducer and Activator of 
Transcription (STAT) [73]. Once outside signals such as interferon, 
interleukins, growth factors, or other chemical messengers, 
bind to their cognate receptors, receptor associated Jaks become 
activated. Subsequently, STAT proteins are activated, dimerized and 
translocated into the cell nucleus [74]. In the nucleus, STATs regulate 
cell growth, survival and differentiation through modulating the 
expression of target genes. 

Most oncogenic viruses encode proteins that can activate the 
Jak/STAT pathway (Figure 1). For instance, the EBV encoded LMP1 
has been shown to activate the Jak/STAT pathway through directly 
interacting with Jak3 and activating STAT1/3 in EBV-immortalized 
B cells [75]. Jak-STAT and NF-κB pathways are significantly activated 
by EBV infection in diffuse large B-cell lymphoma (DLBCL) cell lines 
[76]. HBV encoded HBx and HCV encoded NS5A induce Jak-STAT 
pathway through activation of STAT3 to promote HCC development 
[77-80]. In HTLV-1-transformed cells, Jak1, Jak3, and STAT5 are 
hyper-activated which promote cell proliferation of T cells [81,82]. 
MDV, an avian oncogenic virus, encoded oncoproteins Meq can 
up-regulate the expression of oncogenic protein, STAT3, and down-
regulate the inhibitory signal like SHP-1, SOCS2, and PIAS [83].

However, STAT1 and STAT3 appear to play opposite roles in 
tumorigenesis. STAT1 induces pro-apoptotic and anti-proliferative 
genes in tumor cells and then enhances innate and adaptive 
immunity, while STAT3 is considered an oncogene due to its ability 
of promoting cell survival and virus-mediated transformation [84,85]. 
HPV E6 alone can inhibit STAT1 protein, decrease IFN expression 
and promote virus amplification and maintenance, but the inhibitory 
effects are greatly enhanced in the presence of E7 coexpression 
[86,87]. KSHV encoded RIF has been reported to form inhibitory 
complex with Jak1, Tyk2, and STAT2, resulting in impaired STAT1 
and STAT2 activity and type I IFN signaling [88]. Thus, it is likely that 
viruses might employ different strategies in regulating transcription 
factors to promote viral replication.

TLR and IFN pathways

TLR: Viral infection triggers an early host immune response 
through activation of Pattern Recognition Receptors (PRR), such as 
Toll-Like Receptors (TLR). TLRs are transmembrane proteins that 
recognize Pathogen-Associated Molecular Patterns (PAMPs) and 
initiate innate and adaptive immune responses against pathogens 
[89,90]. Current studies have identified TLR2, -3, -4, -7, -8, and -9 that 
are involved in the recognition of viruses through binding to DNA, 
RNA, or viral glycoproteins [91-93]. All TLRs, except TLR3, recruit 
IL-1R-Associated Protein Kinases (IRAK) via adaptor MyD88, and 
subsequently activate MAPK and NF-κB pathways, finally inducing 
immune responses, inflammation, and cell survival [94]. TLR3 is the 
only one that relies on TRIF instead of MyD88 to activate IRF3, IRF7 
and to induce the production of type I IFN.

Viruses have evolved different strategies to block the anti-viral 
effects of IFN in this pathway (Figure 1). EBV Rta suppresses IRF3 
and IRF7 expression during the viral reactivation period and thereby 
inhibits Type I IFN responses to virus infection [95]. HTLV-I p30 
protein abrogates the interferon response during viral replication 
through counteracting TLR3 and TLR4 signaling in human 
monocytes and dendritic cells [96]. KSHV-encoded Replication 
and Transcription Activator (RTA) protein can attenuate host 
defenses through specifically degrading TRIF by the ubiquitin-
proteasome pathway [97]. Furthermore, KSHV is able to use the 
TLR3-TRIF pathway to enhance the expression of RTA, to expedite 
the degradation process of TRIF, and to block the TLR3-mediated 
inhibitory effects on KSHV replication [98]. Recent study showed 
that infection with KSHV efficiently inhibited TLR2-mediated NF-κB 
activation in THP-1 monocytes through RTA [99].
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TLRs can also induce JNK, p38 and NF-κB pathways to regulate 
cell survival and proliferation. In this case, TLR can be enhanced by 
some viruses. For example, HTLV-I Tax induces TLR expression 
and synergistically activates NF-κB with wild-type MyD88, which 
contribute to cell proliferation and survival [100]. During primary 
infection, KSHV upregulates TLR3 expression and induces TLR3-
specific cytokines and chemokines, including beta 1 interferon 
(IFN-β1) and CXCL10 (IP-10) in human monocytes [101]. This may 
be beneficial for viruses to establish latency. Moreover, activation 
of TLR7/8 can reactivate latent KSHV and induce viral lytic gene 
transcription and replication [102].

IFN pathway: Interferons (IFNs) are pleiotropic cytokines 
that exhibit important biologic activities, including antiviral, 
antiproliferative, antitumor and immunomodulatory effects 
[103,104]. IFNs are classified into two categories: type I IFNs contains 
the IFN−α, −β, −ω, −τ, −κ, −λ and -ζ; type-II IFN contains only 
IFN-γ  [105,106]. IFNs bind to IFNR and initiate the IFN pathway 
depending on Jak-STAT activation. Activated STAT1 and STAT2 
can form transcriptional complexes such as ISG Factor-3 complex 

(ISGF3) that translocate to the nucleus to induce genes expression 
[103,106] (Figure 1).

Viruses have evolved different strategies to block this pathway. 
For instance, HTLV-I-infected dendritic cells have an impaired 
ability to secrete type 1 IFN [107]. HTLV-I evades IFN signaling 
by decreasing the phosphorylation level of Tyk2 and STAT2 and 
inducing the Suppressor of Cytokine Signaling 1 (SOCS1) [108,109]. 
HPV oncoproteins E6 and E7 disrupt the type I IFN pathway through 
interacting with p48/IRF and inhibiting the formation of ISGF3 
[110-112]. Silencing HPV-18 E1 mRNA in HeLa cells showed that 
E1 can mitigate the host defense against infection via inducing 
transcriptional repressors that coordinately inhibit TLR, IFN and 
apoptosis signaling pathway and inducing transcriptional activators 
involved in viral replication [113].

NF-κB: NF-κB consists of five subunits: RelA (p65), c-Rel, RelB, 
p50/NF-κB1 and p52/NF-κB2 [114]. In the canonical NF-κB signaling 
pathway, stimuli bind to receptors and activate the IκB kinase (IKK) 
complex, which is composed of two catalytic subunits (IKKα and 

Figure 1: Common cellular signaling factors for oncogenic viral proteins.
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IKKβ) and a regulatory subunit (IKKγ/NEMO) [115]. Without 
stimulation, NF-κB binds with IκBs in the cytoplasm. Once IKK is 
activated, it can target IκBs for polyubiquitination and proteasomal 
degradation. Freed NF-κB dimers translocate to the nucleus where 
they act as a transcription factor to induce multiple target genes. In the 
alternative NF-κB pathway, stimulation of the kinase NIK activates 
an IKKα homodimer and then IKKα activates a non-canonical NF-κB 
pathway in which p100 is process to p52, which translocates as p52/
RELB hetero dimers into the nucleus to perform its trans-activation 
activity [116-118]. 

NF-κB is a major activator of anti-apoptotic gene expression 
and oncogenesis, thus, it is frequently activated during oncogenic 
virus infection to promote cell growth (Figure 1).  Anti-apoptotic 
proteins Bcl-2, Bfl-1, and A20 can be upregulated by LMP1-
mediated NF-κB activation [119,120]. Suppressing NF-κB activation 
causes spontaneous apoptosis in EBV-transformed LCLs providing 
further clues for its role in LMP1 signaling [121]. Similar to LMP1, 
transmembrane protein K15 of KSHV activates the NF-κB pathway 
depending on phosphorylation of tyrosine residue 481 in a C-terminal 
YEEVL motif [122].  It was found that KSHV K15 plays a role in 
NIK/IKK recruitment and results in the phosphorylation of p65/
RelA [123]. In addition, HBx-induced NF-κB activation is mediated 
by direct interaction with TNFR1 and thereby induces hepatic 
steatosis and apoptosis [124,125]. Recently, a novel mechanism 
of HBx-induced NF-κB activation is discovered, forming a ternary 
complex among HBx, p22-FLIP and NEMO can greatly enhance 
NF-κB activation [126]. Moreover, HTLV-I Tax is able to activate 
NF-κB in both the cytoplasm and nucleus to promote proliferative 
effect on lymphocytes [82]. Tax binds the IKKγ/NEMO complex in 
the cytoplasm to affect IKK complex activity [127]. Up-regulation of 
NF-κB can be considered as a powerful weapon for preventing host 
cell apoptosis and then accomplishing transformation [128]. A Tax 
mutant that activates CREB/ATF but cannot activate NF-κB is able to 
immortalize human primary T-lmphocytes. This indicates that Tax 
can transform cells through NF-κB-independent pathway [129]. 

In addition to effects on cell survival, NF-κB can also activate 
multiple downstream targets that may enhance inflammatory 
responses and angiogenesis, such as cytokines and chemokines. LMP 
can promote the expression of proinflammatory cytokines such as 
IL-6 and IL-8, and angiogenesis factors such as COX2 and VEGF 
via the NF-κB-dependent pathway [61,130]. IL-6 and IL-8 play an 
important role in initiation and maintenance of acute inflammatory 
responses. COX2 and VEGF are related with angiogenesis and 
enhanced tumor metastasis.

Conclusion and Remarks
In the past decades, our knowledge of oncogenic virus-mediated 

modification of host cell signaling pathways has been growing 
rapidly.  It is a battle between the virus and the host. Viruses hijack 
host growth stimulatory pathways to aid their replication and evade 
the host immune surveillance to make a conducive environment 
for tumor formation.  We summarized an overview of common 
characteristics among oncogenic viruses (Table 1) and Figure 1 
generally illustrates the dynamic processes of host signaling pathways 
affected by activation or inhibition of viral oncogenic factors. 
Actually, most signaling pathways are like double-edged swords for 
viruses. Their mutual interaction is to take advantage of the good side 
and repress the bad one. For example, DDR is mainly responsible for 
gene repair and clearance of damaged cells; thereby viruses encode 
proteins to counteract the effect of its downstream targets. But during 
certain period of infection, DDR is beneficial for virus replication and 
establishing latency. Over last a few decades, a significant amount 
of efforts have been invested by numerous researchers in order to 
clarify the function of host cell signaling pathways during infection of 
oncogenic viruses, but there are still mysteries to be discovered, e.g. 
the precise role of viruses in tumorigenesis. The new development 
of anti-viral vaccines/drugs and modulators of host signaling factors 
against oncogenic virus elements are attainable goals that have not 
yet been accomplished in animal/human cancer research fields.  
Although many mechanisms have been revealed in cell signaling 
cascades, given the number and diversity of the yet-to-be-studied 
oncogenic viral pathogens, much more is left to be discovered.
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