Annals of Chromatography and Separation Techniques

Archive Articles

Article Image 1

Investigation of Naturally Occurring Fumonisin B1 and Glycated Fumonisin B1 in Korean Feedstuffs

Mycotoxins are potentially dangerous contaminants of livestock feeds. In this study, we measured the levels of fumonisin B1 and glycated fumonisin B1 in feedstuffs and then investigated the ability of the extrusion heating regimen to convert the most prevalent mycotoxin contaminant, fumonisin B1 , to a less toxic glycated form. All feed samples were analyzed with fully validated methods. All measured concentrations of fumonisin B1 were below harmful thresholds, including European Union-recommended levels or US Food and Drug Administration action levels.

Because fumonisin B1 was highly contaminated mycotoxin in our present investigation and fumonisin B1 has been shown to be less toxic following Maillard type reaction with reducing sugar, we examined the formation of fumonisin B1 derivatives by Maillard reaction under extrusion process conditions. We employed a variety of tandem mass spectrometric methodologies to selectively detect fumonisin B1 derivatives and to elucidate their structures partially. We found that compounds of m/z 736 were more likely artifacts or side reaction products rather than glycation products. N-(carboxymethyl) fumonisin B1 of m/z 780 and other major glycation products of m/z 794 and 810 were not detected, and only negligible amounts of methylene fumonisin B1 was found in 10 extruded feed samples. Therefore, either the tested extrusion conditions did not induce fumonisin B1 glycation or the glycation products simply could not be detected by the method employed in this study.

Jongsung Ahn¹, Hyenjong Kim¹, and Kwang-Yeop Jahng²*


Article Image 1

Removal of Acid Beverage Flocs in Crystal Sugar by Adsorption Column Chromatography: Preliminary Study with Adsorbent Resin

The sugar industry has been facing some problems with white sugar intended for soft drinks production. Some studies have been demonstrated the sugar could be source of insoluble substances technically called by Acid Beverage Flocs (ABF). It appears during the beverage production; however, the flocs are easily disappearing with shaking. This may be related to raw material the sugarcane quality and, consequently, with the efficiency of the juice clarification process, since if there is no adequate juice treatment. The sugarcane commonly has lower quality and higher intensity of impurities, such as proteins, wax, minerals and colloids. The sugar industries are implementing solutions to reduce the amount of impurities through using technologies like ionic resins to removal of color, odor or undesirable taste. It could transform raw sugar in refined or white sugars. The aim of this work was evaluate the efficiency of purification of sugar solution with chromatographic adsorption system. We observed that the color reduction was around 69% and an intensive reduction in turbidity of sugar aqueous solution. There were variation on sucrose and increase on reducing sugars (glucose and fructose) contents. It is possible to conclude that the process could be efficient to reduce the color (MAU color), turbidity and ABF into sugar solutions.

Roberta Bergamin Lima and Claudio Lima de Aguiar*


Article Image 1

A Study to Evaluate Aflatoxin Contamination in Food from Gauteng Province

Aflatoxins (AFs) and their producers have been found to be problematic and is still an issue. This is due to their role in influencing food quality, health and economy loss. In maintaining good food quality, minimize AFs occurrence and its deleterious effects, it is essential that issues relating to mycotoxin production and contamination are monitored, and addressed on a regular basis. This will proffer suggestions for immediate actions to be taken, in order to achieve and maintain regulatory limit before situations are out of control. Hence the case study to evaluate the concentration of AFs in food, by way of thin layer chromatography and high performance liquid chromatography was attempted. This is to monitor concentrations of the emerging mycotoxin in relation to international regulatory limits. Concentrations levels ranging 0.06 - 77.97 ppb was observed, (mean: 16.8 ppb) and measured out in the food samples of study, exceeding the ISO limits (0.05 ppb). This calls for proper monitoring of pre and postproduction stages in food, by employing easy to use chromatographic techniques as a routine process to screen and ascertain concentrations do not exceed regulatory limits.

Henry E Iheanacho¹,²,³*


Article Image 1

Determination of HMF in Some Instant Foods and Its Biodegradation by Some Lactic Acid Bacteria in Medium and Food

The aims of this study were to determine HMF level in some foods and to reduce their level by biodegradation. Coffee whitener, cappuccino, hot chocolate, instant coffee, instant powdered mix (coffee, coffee whitener and sugar) and aromatized cocoa were subjected to HMF analysis in the scope of this study. The HMF determination of samples was carried out using a high performance liquid chromatography. Color properties of the samples were determined according to standard procedures and their relations with HMF content were also investigated. The biological degradation of HMF with lactic acid bacteria was also studied with broth media and a model food system (reconstituted milk).The average HMF levels were 12.59 mg/kg for coffee whitener, 572.49 mg/ kg for cappuccino, 660.29 mg/kg for hot chocolate, 1804.91 mg/kg for instant coffee, 871.56 mg/kg for instant powdered mix and 980.94 mg/kg for aromatized cocoa. The addition of lactic acid cultures reduced the HMF content of the samples. HMF levels of broth media and model food inoculated with lactic acid bacteria (L. lactis, L.bulgaricus, L. cremoris) decreased about 25 % as a result of HMF biodegradation.

Rasim Alper Oral¹, Mahmut Dogan², Kemal Sarıoglu², Ahmed Kayacıer¹, and Osman Sagdic³*


Article Image 1

An Integrated Analysis of the Musa Paradisiaca Peel, Using UHPLC-ESI, FT IR and Confocal Microscopy Techniques

When the banana (Musa paradisiaca) peel was subject of enzymatic hydrolysis with cellulase and hemicellulase, only glucose was obtained. Images from banana peel, using confocal laser scanning microscopy, demonstrate that the cellulose is the main structural compound. Fatty acids, phenolic and other compounds were detected from the organic residual extract, and characterized by means of NMR, FT-IR and UHPLC-MS techniques. The presences of these compounds were corroborated through a steam distillation. Under this condition, banana peel could have potential applications in the food field, where could be used to improve some procedures such as the obtaining of banana vinegar.

Miriam Alejandra González Corona¹, Mayra Beatriz Gómez-Patiño², María de Jesús Perea Flores², Luis Alberto Moreno Ruiz², Blanca Margarita Berdeja Martinez¹, and Daniel Arrieta-Baez²*