Annals of Chromatography and Separation Techniques

Archive Articles

Article Image 1

Current Trends in Lignocellulosic Analysis with Chromatography

The conversion of lignocellulosic biomass into biofuel and biomaterial is promising for the substitution of fossil resources in energy and material applications. Given the complexity of plant cell wall, the main challenge is to obtain lignocelluloses with high yield and purity. For a better understanding of lignocellulosic biomass, chromatography stands out as a powerful separation method that can support the lab directed research and pilot scale production of biomaterial and biochemical. This paper provides a review on the characterization of cellulose, hemicellulose and lignin along with their derivatives and decomposed sugar monomers, in particular their isolation and purificationmethods using various specific types of chromatography. Methods with various specific types of chromatography. This review also summarizes different chromatographic methods for obtaining the molecular weights of cellulose, hemicellulose and lignin that have been used in recent years, and highlights future opportunities for the application of those biopolymers.

Fengbo Sun¹ and Qining Sun²*


Article Image 1

Structural Characterization of Bamboo Lignin Isolated With Formic Acid and Alkaline Peroxide by Gel Permeation Chromatography and Pyrolysis Gas Chromatography Mass Spectrometry

Fractionation is an effective technology to maximize the utilization of lignocelluloses for the production of chemicals and materials. In this case, bamboo was subjected to a two-step fractionation process based on the concept of biorefinery: (a) formic acid treatment at boiling point under atmospheric pressure for 2 h, and (b) post treatment with alkaline hydrogen peroxide solution containing 1% NaOH and 1% H2 O2 at 80 ºC. The combination of formic acid delignification and alkaline hydrogen peroxide degradation achieved an effective removal of both lignin (delignification rate 94.9%) and hemicelluloses (removal rate 87.4%) from bamboo, producing cellulose rich pulp, formic acid lignin and sugars. To investigate the structural modification of lignin during the fractionation process, the residual lignin in the treated samples was isolated and characterized with multiply techniques including gel permeation chromatography, pyrolysis gas chromatography mass spectrometry, Fourier-transform infrared spectroscopy, etc. The relative ratio of S/G was 1.63 for bamboo milled wood lignin (L1), whereas the lignin isolated from the formic acid treated cellulose-rich fraction (L2) presented a chromatograph similar to that of L1 but had a lower S/G ratio of 1.28. This indicated that a preferential removal of S units during the formic acid fractionation process. In addition, alkaline hydrogen peroxide treatment resulted in more removal of S units, as indicated by a lower S/G ratio of 0.71.

Xun Li¹, Chang-Zhou Chen¹, and Ming-Fei Li¹*

 


Article Image 1

Volatile Compound Profiles by HS GC MS for the Evaluation of Postharvest Conditions of a Peach Cultivar

Volatile Organic Compounds (VOCs) profile of foods obtained by Gas Chromatography/Mass Spectrometry (GC/MS) can be considered a potent tool of food products quality changes occurring as a result of different processing, such as ripening and deterioration. The aim of the present study was the evaluation of volatiles profiles of peaches (cv Springcrest) during their storage in conditions similar to those of long distance transport that normally these products undergo before being placed on market. We investigated control sample (no stored fruit) and peaches stored in cardboard boxes wrapped in heat-sealed HD polythene bags, both in normal and modified atmosphere (0% and 23% CO2 ) after 1 and 8 days of storage at 4°C. GC/MS analysis of these samples allowed the identification of a total of 115 VOCs.

The comparison of the VOCs profile of the three peach samples (control, normal atmosphere and 23% CO2 ) shows that fruits packaged in normal atmosphere released a greater amount of esters of medium chain fatty acids, such as ethyl nonanoate and ethyl dodecanoate. On the other hand, fruits stored in normal atmosphere and modified atmosphere after 8 days of storage (increased concentration of CO2 in packs) released a greater amount of esters of long chain fatty acids, such as ethyl hexadecanoate.

Livia Malorni¹, Antonella Martignetti¹, and Rosaria Cozzolino¹*


Article Image 1

Validation of Assay Indicating Method Development of Imatinib in Bulk and Its Capsule Dosage Form by Liquid Chromatography

A novel, simple and economic reverse phase High Performance Liquid Chromatography (RP-HPLC) method has been developed for the quantification of Imatinib in bulk and capsule dosage form with greater precision and accuracy. Separation was achieved on Analytical technologies, C-18, (250mm*4.6mm) column in isocratic mode with mobile phase consisting of acetonitrile: potassium dihydrogen phosphate buffer (pH 2.5) (30:70v/v) with a f low rate of 0.8 mL/min. The detection was carried out at 268 nm. The retention time of Imatinib was found to be 2.67 min. The method was validated as per ICH guidelines. Linearity was established for Imatinib in the range 5-35 μg / ml with r2 value 0.996. The percentage recovery of Imatinib was found to be in the range 99.49-99.67 %. The high recovery and low relative standard deviation confirm the suitability of the proposed method for the estimation of the drug in bulk and capsule dosage forms. Validation studies demonstrated that the proposed RP-HPLC method is simple, specific, rapid, reliable and reproducible for the determination of Imatinib for quality control level.

Nalini Kanta Sahoo¹, Madhusmita Sahu¹, V Alagarsamy¹, B Srividya², and Chinmaya Keshari Sahoo³*

 

 

Article Image 1

Current Status of Two-Dimensional Gel Electrophoresis and Multi-Dimensional Liquid Chromatography as Proteomic Separation Techniques

Proteomics is very important component in the era of post-genomics because it can address functions of genes and some important non-gene-determined biological issues such as Post Translational Modifications (PTMs), splicing, translocation, and spatial structure. Proteome is very complex, including multiple parameters such as kind of proteins, copy number of each protein, PTMs, isoforms, spatial structure of each protein, protein-protein interaction, and protein-other molecule interaction, etc. Moreover, proteome is dynamic, and alters with different conditions such as different physiological processes, different pathological processes, and different disease status.

Xianquan Zhan¹,²,³,⁴*